Λύση ως προς x
x=-\frac{2}{5}=-0,4
x=1
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=-3 ab=5\left(-2\right)=-10
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 5x^{2}+ax+bx-2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-10 2,-5
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -10.
1-10=-9 2-5=-3
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-5 b=2
Η λύση είναι το ζεύγος που δίνει άθροισμα -3.
\left(5x^{2}-5x\right)+\left(2x-2\right)
Γράψτε πάλι το 5x^{2}-3x-2 ως \left(5x^{2}-5x\right)+\left(2x-2\right).
5x\left(x-1\right)+2\left(x-1\right)
Παραγοντοποιήστε 5x στο πρώτο και στο 2 της δεύτερης ομάδας.
\left(x-1\right)\left(5x+2\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=1 x=-\frac{2}{5}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-1=0 και 5x+2=0.
5x^{2}-3x-2=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 5, το b με -3 και το c με -2 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
Υψώστε το -3 στο τετράγωνο.
x=\frac{-\left(-3\right)±\sqrt{9-20\left(-2\right)}}{2\times 5}
Πολλαπλασιάστε το -4 επί 5.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 5}
Πολλαπλασιάστε το -20 επί -2.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 5}
Προσθέστε το 9 και το 40.
x=\frac{-\left(-3\right)±7}{2\times 5}
Λάβετε την τετραγωνική ρίζα του 49.
x=\frac{3±7}{2\times 5}
Το αντίθετο ενός αριθμού -3 είναι 3.
x=\frac{3±7}{10}
Πολλαπλασιάστε το 2 επί 5.
x=\frac{10}{10}
Λύστε τώρα την εξίσωση x=\frac{3±7}{10} όταν το ± είναι συν. Προσθέστε το 3 και το 7.
x=1
Διαιρέστε το 10 με το 10.
x=-\frac{4}{10}
Λύστε τώρα την εξίσωση x=\frac{3±7}{10} όταν το ± είναι μείον. Αφαιρέστε 7 από 3.
x=-\frac{2}{5}
Μειώστε το κλάσμα \frac{-4}{10} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=1 x=-\frac{2}{5}
Η εξίσωση έχει πλέον λυθεί.
5x^{2}-3x-2=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
5x^{2}-3x-2-\left(-2\right)=-\left(-2\right)
Προσθέστε 2 και στις δύο πλευρές της εξίσωσης.
5x^{2}-3x=-\left(-2\right)
Η αφαίρεση του -2 από τον εαυτό έχει ως αποτέλεσμα 0.
5x^{2}-3x=2
Αφαιρέστε -2 από 0.
\frac{5x^{2}-3x}{5}=\frac{2}{5}
Διαιρέστε και τις δύο πλευρές με 5.
x^{2}-\frac{3}{5}x=\frac{2}{5}
Η διαίρεση με το 5 αναιρεί τον πολλαπλασιασμό με το 5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(-\frac{3}{10}\right)^{2}
Διαιρέστε το -\frac{3}{5}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{3}{10}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{3}{10} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
Υψώστε το -\frac{3}{10} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
Προσθέστε το \frac{2}{5} και το \frac{9}{100} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{3}{10}\right)^{2}=\frac{49}{100}
Παραγον x^{2}-\frac{3}{5}x+\frac{9}{100}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{3}{10}=\frac{7}{10} x-\frac{3}{10}=-\frac{7}{10}
Απλοποιήστε.
x=1 x=-\frac{2}{5}
Προσθέστε \frac{3}{10} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}