Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

5x^{2}+21x+4-4=0
Αφαιρέστε 4 και από τις δύο πλευρές.
5x^{2}+21x=0
Αφαιρέστε 4 από 4 για να λάβετε 0.
x\left(5x+21\right)=0
Παραγοντοποιήστε το x.
x=0 x=-\frac{21}{5}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x=0 και 5x+21=0.
5x^{2}+21x+4=4
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
5x^{2}+21x+4-4=4-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
5x^{2}+21x+4-4=0
Η αφαίρεση του 4 από τον εαυτό έχει ως αποτέλεσμα 0.
5x^{2}+21x=0
Αφαιρέστε 4 από 4.
x=\frac{-21±\sqrt{21^{2}}}{2\times 5}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 5, το b με 21 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±21}{2\times 5}
Λάβετε την τετραγωνική ρίζα του 21^{2}.
x=\frac{-21±21}{10}
Πολλαπλασιάστε το 2 επί 5.
x=\frac{0}{10}
Λύστε τώρα την εξίσωση x=\frac{-21±21}{10} όταν το ± είναι συν. Προσθέστε το -21 και το 21.
x=0
Διαιρέστε το 0 με το 10.
x=-\frac{42}{10}
Λύστε τώρα την εξίσωση x=\frac{-21±21}{10} όταν το ± είναι μείον. Αφαιρέστε 21 από -21.
x=-\frac{21}{5}
Μειώστε το κλάσμα \frac{-42}{10} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=0 x=-\frac{21}{5}
Η εξίσωση έχει πλέον λυθεί.
5x^{2}+21x+4=4
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
5x^{2}+21x+4-4=4-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
5x^{2}+21x=4-4
Η αφαίρεση του 4 από τον εαυτό έχει ως αποτέλεσμα 0.
5x^{2}+21x=0
Αφαιρέστε 4 από 4.
\frac{5x^{2}+21x}{5}=\frac{0}{5}
Διαιρέστε και τις δύο πλευρές με 5.
x^{2}+\frac{21}{5}x=\frac{0}{5}
Η διαίρεση με το 5 αναιρεί τον πολλαπλασιασμό με το 5.
x^{2}+\frac{21}{5}x=0
Διαιρέστε το 0 με το 5.
x^{2}+\frac{21}{5}x+\left(\frac{21}{10}\right)^{2}=\left(\frac{21}{10}\right)^{2}
Διαιρέστε το \frac{21}{5}, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{21}{10}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{21}{10} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+\frac{21}{5}x+\frac{441}{100}=\frac{441}{100}
Υψώστε το \frac{21}{10} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
\left(x+\frac{21}{10}\right)^{2}=\frac{441}{100}
Παραγον x^{2}+\frac{21}{5}x+\frac{441}{100}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{10}\right)^{2}}=\sqrt{\frac{441}{100}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{21}{10}=\frac{21}{10} x+\frac{21}{10}=-\frac{21}{10}
Απλοποιήστε.
x=0 x=-\frac{21}{5}
Αφαιρέστε \frac{21}{10} και από τις δύο πλευρές της εξίσωσης.