Λύση ως προς x
x=-4
x=0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x\left(5x+20\right)=0
Παραγοντοποιήστε το x.
x=0 x=-4
Για να βρείτε λύσεις εξίσωσης, να λύσετε x=0 και 5x+20=0.
5x^{2}+20x=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-20±\sqrt{20^{2}}}{2\times 5}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 5, το b με 20 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±20}{2\times 5}
Λάβετε την τετραγωνική ρίζα του 20^{2}.
x=\frac{-20±20}{10}
Πολλαπλασιάστε το 2 επί 5.
x=\frac{0}{10}
Λύστε τώρα την εξίσωση x=\frac{-20±20}{10} όταν το ± είναι συν. Προσθέστε το -20 και το 20.
x=0
Διαιρέστε το 0 με το 10.
x=-\frac{40}{10}
Λύστε τώρα την εξίσωση x=\frac{-20±20}{10} όταν το ± είναι μείον. Αφαιρέστε 20 από -20.
x=-4
Διαιρέστε το -40 με το 10.
x=0 x=-4
Η εξίσωση έχει πλέον λυθεί.
5x^{2}+20x=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{5x^{2}+20x}{5}=\frac{0}{5}
Διαιρέστε και τις δύο πλευρές με 5.
x^{2}+\frac{20}{5}x=\frac{0}{5}
Η διαίρεση με το 5 αναιρεί τον πολλαπλασιασμό με το 5.
x^{2}+4x=\frac{0}{5}
Διαιρέστε το 20 με το 5.
x^{2}+4x=0
Διαιρέστε το 0 με το 5.
x^{2}+4x+2^{2}=2^{2}
Διαιρέστε το 4, τον συντελεστή του όρου x, με το 2 για να λάβετε 2. Στη συνέχεια, προσθέστε το τετράγωνο του 2 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+4x+4=4
Υψώστε το 2 στο τετράγωνο.
\left(x+2\right)^{2}=4
Παραγον x^{2}+4x+4. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+2=2 x+2=-2
Απλοποιήστε.
x=0 x=-4
Αφαιρέστε 2 και από τις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}