Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Λύση ως προς x (complex solution)
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625=5^{x}
Υπολογίστε το 5στη δύναμη του 286 και λάβετε 80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625.
5^{x}=80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\log(5^{x})=\log(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625)
Λάβετε τον λογάριθμο και των δύο πλευρών της εξίσωσης.
x\log(5)=\log(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625)
Ο λογάριθμος ενός αριθμού υψωμένου σε δύναμη είναι η δύναμη επί τον λογάριθμο του αριθμού.
x=\frac{\log(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625)}{\log(5)}
Διαιρέστε και τις δύο πλευρές με \log(5).
x=\log_{5}\left(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625\right)
Με τον τύπο αλλαγής βάσης \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).