Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=7 ab=4\left(-2\right)=-8
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 4x^{2}+ax+bx-2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,8 -2,4
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -8.
-1+8=7 -2+4=2
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-1 b=8
Η λύση είναι το ζεύγος που δίνει άθροισμα 7.
\left(4x^{2}-x\right)+\left(8x-2\right)
Γράψτε πάλι το 4x^{2}+7x-2 ως \left(4x^{2}-x\right)+\left(8x-2\right).
x\left(4x-1\right)+2\left(4x-1\right)
Παραγοντοποιήστε x στο πρώτο και στο 2 της δεύτερης ομάδας.
\left(4x-1\right)\left(x+2\right)
Παραγοντοποιήστε τον κοινό όρο 4x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
4x^{2}+7x-2=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-2\right)}}{2\times 4}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-7±\sqrt{49-4\times 4\left(-2\right)}}{2\times 4}
Υψώστε το 7 στο τετράγωνο.
x=\frac{-7±\sqrt{49-16\left(-2\right)}}{2\times 4}
Πολλαπλασιάστε το -4 επί 4.
x=\frac{-7±\sqrt{49+32}}{2\times 4}
Πολλαπλασιάστε το -16 επί -2.
x=\frac{-7±\sqrt{81}}{2\times 4}
Προσθέστε το 49 και το 32.
x=\frac{-7±9}{2\times 4}
Λάβετε την τετραγωνική ρίζα του 81.
x=\frac{-7±9}{8}
Πολλαπλασιάστε το 2 επί 4.
x=\frac{2}{8}
Λύστε τώρα την εξίσωση x=\frac{-7±9}{8} όταν το ± είναι συν. Προσθέστε το -7 και το 9.
x=\frac{1}{4}
Μειώστε το κλάσμα \frac{2}{8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=-\frac{16}{8}
Λύστε τώρα την εξίσωση x=\frac{-7±9}{8} όταν το ± είναι μείον. Αφαιρέστε 9 από -7.
x=-2
Διαιρέστε το -16 με το 8.
4x^{2}+7x-2=4\left(x-\frac{1}{4}\right)\left(x-\left(-2\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το \frac{1}{4} με το x_{1} και το -2 με το x_{2}.
4x^{2}+7x-2=4\left(x-\frac{1}{4}\right)\left(x+2\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
4x^{2}+7x-2=4\times \frac{4x-1}{4}\left(x+2\right)
Αφαιρέστε x από \frac{1}{4} βρίσκοντας έναν κοινό παρονομαστή και αφαιρώντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
4x^{2}+7x-2=\left(4x-1\right)\left(x+2\right)
Ακύρωση του μέγιστου κοινού παράγοντα 4 σε 4 και 4.