Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

4x^{2}+6x-3=12
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
4x^{2}+6x-3-12=12-12
Αφαιρέστε 12 και από τις δύο πλευρές της εξίσωσης.
4x^{2}+6x-3-12=0
Η αφαίρεση του 12 από τον εαυτό έχει ως αποτέλεσμα 0.
4x^{2}+6x-15=0
Αφαιρέστε 12 από -3.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-15\right)}}{2\times 4}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 4, το b με 6 και το c με -15 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 4\left(-15\right)}}{2\times 4}
Υψώστε το 6 στο τετράγωνο.
x=\frac{-6±\sqrt{36-16\left(-15\right)}}{2\times 4}
Πολλαπλασιάστε το -4 επί 4.
x=\frac{-6±\sqrt{36+240}}{2\times 4}
Πολλαπλασιάστε το -16 επί -15.
x=\frac{-6±\sqrt{276}}{2\times 4}
Προσθέστε το 36 και το 240.
x=\frac{-6±2\sqrt{69}}{2\times 4}
Λάβετε την τετραγωνική ρίζα του 276.
x=\frac{-6±2\sqrt{69}}{8}
Πολλαπλασιάστε το 2 επί 4.
x=\frac{2\sqrt{69}-6}{8}
Λύστε τώρα την εξίσωση x=\frac{-6±2\sqrt{69}}{8} όταν το ± είναι συν. Προσθέστε το -6 και το 2\sqrt{69}.
x=\frac{\sqrt{69}-3}{4}
Διαιρέστε το -6+2\sqrt{69} με το 8.
x=\frac{-2\sqrt{69}-6}{8}
Λύστε τώρα την εξίσωση x=\frac{-6±2\sqrt{69}}{8} όταν το ± είναι μείον. Αφαιρέστε 2\sqrt{69} από -6.
x=\frac{-\sqrt{69}-3}{4}
Διαιρέστε το -6-2\sqrt{69} με το 8.
x=\frac{\sqrt{69}-3}{4} x=\frac{-\sqrt{69}-3}{4}
Η εξίσωση έχει πλέον λυθεί.
4x^{2}+6x-3=12
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
4x^{2}+6x-3-\left(-3\right)=12-\left(-3\right)
Προσθέστε 3 και στις δύο πλευρές της εξίσωσης.
4x^{2}+6x=12-\left(-3\right)
Η αφαίρεση του -3 από τον εαυτό έχει ως αποτέλεσμα 0.
4x^{2}+6x=15
Αφαιρέστε -3 από 12.
\frac{4x^{2}+6x}{4}=\frac{15}{4}
Διαιρέστε και τις δύο πλευρές με 4.
x^{2}+\frac{6}{4}x=\frac{15}{4}
Η διαίρεση με το 4 αναιρεί τον πολλαπλασιασμό με το 4.
x^{2}+\frac{3}{2}x=\frac{15}{4}
Μειώστε το κλάσμα \frac{6}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{15}{4}+\left(\frac{3}{4}\right)^{2}
Διαιρέστε το \frac{3}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{3}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{3}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{15}{4}+\frac{9}{16}
Υψώστε το \frac{3}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{69}{16}
Προσθέστε το \frac{15}{4} και το \frac{9}{16} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x+\frac{3}{4}\right)^{2}=\frac{69}{16}
Παραγον x^{2}+\frac{3}{2}x+\frac{9}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{69}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{3}{4}=\frac{\sqrt{69}}{4} x+\frac{3}{4}=-\frac{\sqrt{69}}{4}
Απλοποιήστε.
x=\frac{\sqrt{69}-3}{4} x=\frac{-\sqrt{69}-3}{4}
Αφαιρέστε \frac{3}{4} και από τις δύο πλευρές της εξίσωσης.