Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x\left(4x+1\right)
Παραγοντοποιήστε το x.
4x^{2}+x=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}}}{2\times 4}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-1±1}{2\times 4}
Λάβετε την τετραγωνική ρίζα του 1^{2}.
x=\frac{-1±1}{8}
Πολλαπλασιάστε το 2 επί 4.
x=\frac{0}{8}
Λύστε τώρα την εξίσωση x=\frac{-1±1}{8} όταν το ± είναι συν. Προσθέστε το -1 και το 1.
x=0
Διαιρέστε το 0 με το 8.
x=-\frac{2}{8}
Λύστε τώρα την εξίσωση x=\frac{-1±1}{8} όταν το ± είναι μείον. Αφαιρέστε 1 από -1.
x=-\frac{1}{4}
Μειώστε το κλάσμα \frac{-2}{8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
4x^{2}+x=4x\left(x-\left(-\frac{1}{4}\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 0 με το x_{1} και το -\frac{1}{4} με το x_{2}.
4x^{2}+x=4x\left(x+\frac{1}{4}\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
4x^{2}+x=4x\times \frac{4x+1}{4}
Προσθέστε το \frac{1}{4} και το x βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
4x^{2}+x=x\left(4x+1\right)
Ακύρωση του μέγιστου κοινού παράγοντα 4 σε 4 και 4.