Λύση ως προς x
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
x = \frac{5}{2} = 2\frac{1}{2} = 2,5
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=-4 ab=4\left(-15\right)=-60
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 4x^{2}+ax+bx-15. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-10 b=6
Η λύση είναι το ζεύγος που δίνει άθροισμα -4.
\left(4x^{2}-10x\right)+\left(6x-15\right)
Γράψτε πάλι το 4x^{2}-4x-15 ως \left(4x^{2}-10x\right)+\left(6x-15\right).
2x\left(2x-5\right)+3\left(2x-5\right)
Παραγοντοποιήστε 2x στο πρώτο και στο 3 της δεύτερης ομάδας.
\left(2x-5\right)\left(2x+3\right)
Παραγοντοποιήστε τον κοινό όρο 2x-5 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=\frac{5}{2} x=-\frac{3}{2}
Για να βρείτε λύσεις εξίσωσης, να λύσετε 2x-5=0 και 2x+3=0.
4x^{2}-4x-15=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-15\right)}}{2\times 4}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 4, το b με -4 και το c με -15 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Υψώστε το -4 στο τετράγωνο.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-15\right)}}{2\times 4}
Πολλαπλασιάστε το -4 επί 4.
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 4}
Πολλαπλασιάστε το -16 επί -15.
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 4}
Προσθέστε το 16 και το 240.
x=\frac{-\left(-4\right)±16}{2\times 4}
Λάβετε την τετραγωνική ρίζα του 256.
x=\frac{4±16}{2\times 4}
Το αντίθετο ενός αριθμού -4 είναι 4.
x=\frac{4±16}{8}
Πολλαπλασιάστε το 2 επί 4.
x=\frac{20}{8}
Λύστε τώρα την εξίσωση x=\frac{4±16}{8} όταν το ± είναι συν. Προσθέστε το 4 και το 16.
x=\frac{5}{2}
Μειώστε το κλάσμα \frac{20}{8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 4.
x=-\frac{12}{8}
Λύστε τώρα την εξίσωση x=\frac{4±16}{8} όταν το ± είναι μείον. Αφαιρέστε 16 από 4.
x=-\frac{3}{2}
Μειώστε το κλάσμα \frac{-12}{8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 4.
x=\frac{5}{2} x=-\frac{3}{2}
Η εξίσωση έχει πλέον λυθεί.
4x^{2}-4x-15=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
4x^{2}-4x-15-\left(-15\right)=-\left(-15\right)
Προσθέστε 15 και στις δύο πλευρές της εξίσωσης.
4x^{2}-4x=-\left(-15\right)
Η αφαίρεση του -15 από τον εαυτό έχει ως αποτέλεσμα 0.
4x^{2}-4x=15
Αφαιρέστε -15 από 0.
\frac{4x^{2}-4x}{4}=\frac{15}{4}
Διαιρέστε και τις δύο πλευρές με 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{15}{4}
Η διαίρεση με το 4 αναιρεί τον πολλαπλασιασμό με το 4.
x^{2}-x=\frac{15}{4}
Διαιρέστε το -4 με το 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(-\frac{1}{2}\right)^{2}
Διαιρέστε το -1, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-x+\frac{1}{4}=\frac{15+1}{4}
Υψώστε το -\frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-x+\frac{1}{4}=4
Προσθέστε το \frac{15}{4} και το \frac{1}{4} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{1}{2}\right)^{2}=4
Παραγον x^{2}-x+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{4}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{1}{2}=2 x-\frac{1}{2}=-2
Απλοποιήστε.
x=\frac{5}{2} x=-\frac{3}{2}
Προσθέστε \frac{1}{2} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}