Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

3x^{2}-15x=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 3x με το x-5.
x\left(3x-15\right)=0
Παραγοντοποιήστε το x.
x=0 x=5
Για να βρείτε λύσεις εξίσωσης, να λύσετε x=0 και 3x-15=0.
3x^{2}-15x=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 3x με το x-5.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με -15 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±15}{2\times 3}
Λάβετε την τετραγωνική ρίζα του \left(-15\right)^{2}.
x=\frac{15±15}{2\times 3}
Το αντίθετο ενός αριθμού -15 είναι 15.
x=\frac{15±15}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{30}{6}
Λύστε τώρα την εξίσωση x=\frac{15±15}{6} όταν το ± είναι συν. Προσθέστε το 15 και το 15.
x=5
Διαιρέστε το 30 με το 6.
x=\frac{0}{6}
Λύστε τώρα την εξίσωση x=\frac{15±15}{6} όταν το ± είναι μείον. Αφαιρέστε 15 από 15.
x=0
Διαιρέστε το 0 με το 6.
x=5 x=0
Η εξίσωση έχει πλέον λυθεί.
3x^{2}-15x=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 3x με το x-5.
\frac{3x^{2}-15x}{3}=\frac{0}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{0}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}-5x=\frac{0}{3}
Διαιρέστε το -15 με το 3.
x^{2}-5x=0
Διαιρέστε το 0 με το 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Διαιρέστε το -5, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Υψώστε το -\frac{5}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Παραγον x^{2}-5x+\frac{25}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Απλοποιήστε.
x=5 x=0
Προσθέστε \frac{5}{2} και στις δύο πλευρές της εξίσωσης.