Παράγοντας
x\left(3-5x\right)
Υπολογισμός
x\left(3-5x\right)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x\left(3-5x\right)
Παραγοντοποιήστε το x.
-5x^{2}+3x=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-5\right)}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-3±3}{2\left(-5\right)}
Λάβετε την τετραγωνική ρίζα του 3^{2}.
x=\frac{-3±3}{-10}
Πολλαπλασιάστε το 2 επί -5.
x=\frac{0}{-10}
Λύστε τώρα την εξίσωση x=\frac{-3±3}{-10} όταν το ± είναι συν. Προσθέστε το -3 και το 3.
x=0
Διαιρέστε το 0 με το -10.
x=-\frac{6}{-10}
Λύστε τώρα την εξίσωση x=\frac{-3±3}{-10} όταν το ± είναι μείον. Αφαιρέστε 3 από -3.
x=\frac{3}{5}
Μειώστε το κλάσμα \frac{-6}{-10} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
-5x^{2}+3x=-5x\left(x-\frac{3}{5}\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 0 με το x_{1} και το \frac{3}{5} με το x_{2}.
-5x^{2}+3x=-5x\times \frac{-5x+3}{-5}
Αφαιρέστε x από \frac{3}{5} βρίσκοντας έναν κοινό παρονομαστή και αφαιρώντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
-5x^{2}+3x=x\left(-5x+3\right)
Ακύρωση του μέγιστου κοινού παράγοντα 5 σε -5 και -5.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}