Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

3x-5-3x^{2}=-2x
Αφαιρέστε 3x^{2} και από τις δύο πλευρές.
3x-5-3x^{2}+2x=0
Προσθήκη 2x και στις δύο πλευρές.
5x-5-3x^{2}=0
Συνδυάστε το 3x και το 2x για να λάβετε 5x.
-3x^{2}+5x-5=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -3, το b με 5 και το c με -5 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
Υψώστε το 5 στο τετράγωνο.
x=\frac{-5±\sqrt{25+12\left(-5\right)}}{2\left(-3\right)}
Πολλαπλασιάστε το -4 επί -3.
x=\frac{-5±\sqrt{25-60}}{2\left(-3\right)}
Πολλαπλασιάστε το 12 επί -5.
x=\frac{-5±\sqrt{-35}}{2\left(-3\right)}
Προσθέστε το 25 και το -60.
x=\frac{-5±\sqrt{35}i}{2\left(-3\right)}
Λάβετε την τετραγωνική ρίζα του -35.
x=\frac{-5±\sqrt{35}i}{-6}
Πολλαπλασιάστε το 2 επί -3.
x=\frac{-5+\sqrt{35}i}{-6}
Λύστε τώρα την εξίσωση x=\frac{-5±\sqrt{35}i}{-6} όταν το ± είναι συν. Προσθέστε το -5 και το i\sqrt{35}.
x=\frac{-\sqrt{35}i+5}{6}
Διαιρέστε το -5+i\sqrt{35} με το -6.
x=\frac{-\sqrt{35}i-5}{-6}
Λύστε τώρα την εξίσωση x=\frac{-5±\sqrt{35}i}{-6} όταν το ± είναι μείον. Αφαιρέστε i\sqrt{35} από -5.
x=\frac{5+\sqrt{35}i}{6}
Διαιρέστε το -5-i\sqrt{35} με το -6.
x=\frac{-\sqrt{35}i+5}{6} x=\frac{5+\sqrt{35}i}{6}
Η εξίσωση έχει πλέον λυθεί.
3x-5-3x^{2}=-2x
Αφαιρέστε 3x^{2} και από τις δύο πλευρές.
3x-5-3x^{2}+2x=0
Προσθήκη 2x και στις δύο πλευρές.
5x-5-3x^{2}=0
Συνδυάστε το 3x και το 2x για να λάβετε 5x.
5x-3x^{2}=5
Προσθήκη 5 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
-3x^{2}+5x=5
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{-3x^{2}+5x}{-3}=\frac{5}{-3}
Διαιρέστε και τις δύο πλευρές με -3.
x^{2}+\frac{5}{-3}x=\frac{5}{-3}
Η διαίρεση με το -3 αναιρεί τον πολλαπλασιασμό με το -3.
x^{2}-\frac{5}{3}x=\frac{5}{-3}
Διαιρέστε το 5 με το -3.
x^{2}-\frac{5}{3}x=-\frac{5}{3}
Διαιρέστε το 5 με το -3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{5}{3}+\left(-\frac{5}{6}\right)^{2}
Διαιρέστε το -\frac{5}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{6}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{6} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{5}{3}+\frac{25}{36}
Υψώστε το -\frac{5}{6} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{35}{36}
Προσθέστε το -\frac{5}{3} και το \frac{25}{36} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{5}{6}\right)^{2}=-\frac{35}{36}
Παραγον x^{2}-\frac{5}{3}x+\frac{25}{36}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{6}=\frac{\sqrt{35}i}{6} x-\frac{5}{6}=-\frac{\sqrt{35}i}{6}
Απλοποιήστε.
x=\frac{5+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i+5}{6}
Προσθέστε \frac{5}{6} και στις δύο πλευρές της εξίσωσης.