Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

3xx-8=2x
Η μεταβλητή x δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x.
3x^{2}-8=2x
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
3x^{2}-8-2x=0
Αφαιρέστε 2x και από τις δύο πλευρές.
3x^{2}-2x-8=0
Αναδιατάξτε το πολυώνυμο για να το θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
a+b=-2 ab=3\left(-8\right)=-24
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx-8. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-24 2,-12 3,-8 4,-6
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-6 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα -2.
\left(3x^{2}-6x\right)+\left(4x-8\right)
Γράψτε πάλι το 3x^{2}-2x-8 ως \left(3x^{2}-6x\right)+\left(4x-8\right).
3x\left(x-2\right)+4\left(x-2\right)
Παραγοντοποιήστε 3x στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(x-2\right)\left(3x+4\right)
Παραγοντοποιήστε τον κοινό όρο x-2 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=2 x=-\frac{4}{3}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-2=0 και 3x+4=0.
3xx-8=2x
Η μεταβλητή x δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x.
3x^{2}-8=2x
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
3x^{2}-8-2x=0
Αφαιρέστε 2x και από τις δύο πλευρές.
3x^{2}-2x-8=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με -2 και το c με -8 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-8\right)}}{2\times 3}
Υψώστε το -2 στο τετράγωνο.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-8\right)}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 3}
Πολλαπλασιάστε το -12 επί -8.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 3}
Προσθέστε το 4 και το 96.
x=\frac{-\left(-2\right)±10}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 100.
x=\frac{2±10}{2\times 3}
Το αντίθετο ενός αριθμού -2 είναι 2.
x=\frac{2±10}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{12}{6}
Λύστε τώρα την εξίσωση x=\frac{2±10}{6} όταν το ± είναι συν. Προσθέστε το 2 και το 10.
x=2
Διαιρέστε το 12 με το 6.
x=-\frac{8}{6}
Λύστε τώρα την εξίσωση x=\frac{2±10}{6} όταν το ± είναι μείον. Αφαιρέστε 10 από 2.
x=-\frac{4}{3}
Μειώστε το κλάσμα \frac{-8}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=2 x=-\frac{4}{3}
Η εξίσωση έχει πλέον λυθεί.
3xx-8=2x
Η μεταβλητή x δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x.
3x^{2}-8=2x
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
3x^{2}-8-2x=0
Αφαιρέστε 2x και από τις δύο πλευρές.
3x^{2}-2x=8
Προσθήκη 8 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\frac{3x^{2}-2x}{3}=\frac{8}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}-\frac{2}{3}x=\frac{8}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{1}{3}\right)^{2}
Διαιρέστε το -\frac{2}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{3}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{3} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{8}{3}+\frac{1}{9}
Υψώστε το -\frac{1}{3} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{25}{9}
Προσθέστε το \frac{8}{3} και το \frac{1}{9} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{1}{3}\right)^{2}=\frac{25}{9}
Παραγον x^{2}-\frac{2}{3}x+\frac{1}{9}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{1}{3}=\frac{5}{3} x-\frac{1}{3}=-\frac{5}{3}
Απλοποιήστε.
x=2 x=-\frac{4}{3}
Προσθέστε \frac{1}{3} και στις δύο πλευρές της εξίσωσης.