Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=-7 ab=3\times 4=12
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx+4. Για να βρείτε a και b, ρυθμίστε ένα σύστημα που θα επιλυθεί.
-1,-12 -2,-6 -3,-4
Δεδομένου ότι η ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι αρνητική, a και b είναι και τα δύο αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 12.
-1-12=-13 -2-6=-8 -3-4=-7
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=-3
Η λύση είναι το ζεύγος που δίνει άθροισμα -7.
\left(3x^{2}-4x\right)+\left(-3x+4\right)
Γράψτε πάλι το 3x^{2}-7x+4 ως \left(3x^{2}-4x\right)+\left(-3x+4\right).
x\left(3x-4\right)-\left(3x-4\right)
Παραγοντοποιήστε το x στην πρώτη και το -1 στη δεύτερη ομάδα.
\left(3x-4\right)\left(x-1\right)
Παραγοντοποιήστε τον κοινό όρο 3x-4 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=\frac{4}{3} x=1
Για να βρείτε λύσεις εξίσωσης, λύστε 3x-4=0 και x-1=0.
3x^{2}-7x+4=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 4}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με -7 και το c με 4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 4}}{2\times 3}
Υψώστε το -7 στο τετράγωνο.
x=\frac{-\left(-7\right)±\sqrt{49-12\times 4}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 3}
Πολλαπλασιάστε το -12 επί 4.
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 3}
Προσθέστε το 49 και το -48.
x=\frac{-\left(-7\right)±1}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 1.
x=\frac{7±1}{2\times 3}
Το αντίθετο ενός αριθμού -7 είναι 7.
x=\frac{7±1}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{8}{6}
Λύστε τώρα την εξίσωση x=\frac{7±1}{6} όταν το ± είναι συν. Προσθέστε το 7 και το 1.
x=\frac{4}{3}
Μειώστε το κλάσμα \frac{8}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=\frac{6}{6}
Λύστε τώρα την εξίσωση x=\frac{7±1}{6} όταν το ± είναι μείον. Αφαιρέστε 1 από 7.
x=1
Διαιρέστε το 6 με το 6.
x=\frac{4}{3} x=1
Η εξίσωση έχει πλέον λυθεί.
3x^{2}-7x+4=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
3x^{2}-7x+4-4=-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
3x^{2}-7x=-4
Η αφαίρεση του 4 από τον εαυτό έχει ως αποτέλεσμα 0.
\frac{3x^{2}-7x}{3}=-\frac{4}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}-\frac{7}{3}x=-\frac{4}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{7}{6}\right)^{2}
Διαιρέστε το -\frac{7}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{7}{6}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{7}{6} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{4}{3}+\frac{49}{36}
Υψώστε το -\frac{7}{6} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{1}{36}
Προσθέστε το -\frac{4}{3} και το \frac{49}{36} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{7}{6}\right)^{2}=\frac{1}{36}
Παραγοντοποιήστε το x^{2}-\frac{7}{3}x+\frac{49}{36}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποιηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{7}{6}=\frac{1}{6} x-\frac{7}{6}=-\frac{1}{6}
Απλοποιήστε.
x=\frac{4}{3} x=1
Προσθέστε \frac{7}{6} και στις δύο πλευρές της εξίσωσης.