Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

3x^{2}-5x+4=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\times 4}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με -5 και το c με 4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\times 4}}{2\times 3}
Υψώστε το -5 στο τετράγωνο.
x=\frac{-\left(-5\right)±\sqrt{25-12\times 4}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-\left(-5\right)±\sqrt{25-48}}{2\times 3}
Πολλαπλασιάστε το -12 επί 4.
x=\frac{-\left(-5\right)±\sqrt{-23}}{2\times 3}
Προσθέστε το 25 και το -48.
x=\frac{-\left(-5\right)±\sqrt{23}i}{2\times 3}
Λάβετε την τετραγωνική ρίζα του -23.
x=\frac{5±\sqrt{23}i}{2\times 3}
Το αντίθετο ενός αριθμού -5 είναι 5.
x=\frac{5±\sqrt{23}i}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{5+\sqrt{23}i}{6}
Λύστε τώρα την εξίσωση x=\frac{5±\sqrt{23}i}{6} όταν το ± είναι συν. Προσθέστε το 5 και το i\sqrt{23}.
x=\frac{-\sqrt{23}i+5}{6}
Λύστε τώρα την εξίσωση x=\frac{5±\sqrt{23}i}{6} όταν το ± είναι μείον. Αφαιρέστε i\sqrt{23} από 5.
x=\frac{5+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+5}{6}
Η εξίσωση έχει πλέον λυθεί.
3x^{2}-5x+4=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
3x^{2}-5x+4-4=-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
3x^{2}-5x=-4
Η αφαίρεση του 4 από τον εαυτό έχει ως αποτέλεσμα 0.
\frac{3x^{2}-5x}{3}=-\frac{4}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}-\frac{5}{3}x=-\frac{4}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{5}{6}\right)^{2}
Διαιρέστε το -\frac{5}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{6}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{6} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{4}{3}+\frac{25}{36}
Υψώστε το -\frac{5}{6} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{23}{36}
Προσθέστε το -\frac{4}{3} και το \frac{25}{36} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{5}{6}\right)^{2}=-\frac{23}{36}
Παραγον x^{2}-\frac{5}{3}x+\frac{25}{36}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{6}=\frac{\sqrt{23}i}{6} x-\frac{5}{6}=-\frac{\sqrt{23}i}{6}
Απλοποιήστε.
x=\frac{5+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+5}{6}
Προσθέστε \frac{5}{6} και στις δύο πλευρές της εξίσωσης.