Παράγοντας
\left(x-1\right)\left(3x-1\right)
Υπολογισμός
\left(x-1\right)\left(3x-1\right)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=-4 ab=3\times 1=3
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx+1. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
a=-3 b=-1
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Το μόνο τέτοιο ζεύγος είναι η λύση του συστήματος.
\left(3x^{2}-3x\right)+\left(-x+1\right)
Γράψτε πάλι το 3x^{2}-4x+1 ως \left(3x^{2}-3x\right)+\left(-x+1\right).
3x\left(x-1\right)-\left(x-1\right)
Παραγοντοποιήστε 3x στο πρώτο και στο -1 της δεύτερης ομάδας.
\left(x-1\right)\left(3x-1\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
3x^{2}-4x+1=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
Υψώστε το -4 στο τετράγωνο.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
Προσθέστε το 16 και το -12.
x=\frac{-\left(-4\right)±2}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 4.
x=\frac{4±2}{2\times 3}
Το αντίθετο ενός αριθμού -4 είναι 4.
x=\frac{4±2}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{6}{6}
Λύστε τώρα την εξίσωση x=\frac{4±2}{6} όταν το ± είναι συν. Προσθέστε το 4 και το 2.
x=1
Διαιρέστε το 6 με το 6.
x=\frac{2}{6}
Λύστε τώρα την εξίσωση x=\frac{4±2}{6} όταν το ± είναι μείον. Αφαιρέστε 2 από 4.
x=\frac{1}{3}
Μειώστε το κλάσμα \frac{2}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
3x^{2}-4x+1=3\left(x-1\right)\left(x-\frac{1}{3}\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 1 με το x_{1} και το \frac{1}{3} με το x_{2}.
3x^{2}-4x+1=3\left(x-1\right)\times \frac{3x-1}{3}
Αφαιρέστε x από \frac{1}{3} βρίσκοντας έναν κοινό παρονομαστή και αφαιρώντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
3x^{2}-4x+1=\left(x-1\right)\left(3x-1\right)
Ακύρωση του μέγιστου κοινού παράγοντα 3 σε 3 και 3.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}