Λύση ως προς x
x=-\frac{2}{3}\approx -0,666666667
x=-2
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=8 ab=3\times 4=12
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx+4. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,12 2,6 3,4
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 12.
1+12=13 2+6=8 3+4=7
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=2 b=6
Η λύση είναι το ζεύγος που δίνει άθροισμα 8.
\left(3x^{2}+2x\right)+\left(6x+4\right)
Γράψτε πάλι το 3x^{2}+8x+4 ως \left(3x^{2}+2x\right)+\left(6x+4\right).
x\left(3x+2\right)+2\left(3x+2\right)
Παραγοντοποιήστε x στο πρώτο και στο 2 της δεύτερης ομάδας.
\left(3x+2\right)\left(x+2\right)
Παραγοντοποιήστε τον κοινό όρο 3x+2 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=-\frac{2}{3} x=-2
Για να βρείτε λύσεις εξίσωσης, να λύσετε 3x+2=0 και x+2=0.
3x^{2}+8x+4=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-8±\sqrt{8^{2}-4\times 3\times 4}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με 8 και το c με 4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3\times 4}}{2\times 3}
Υψώστε το 8 στο τετράγωνο.
x=\frac{-8±\sqrt{64-12\times 4}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-8±\sqrt{64-48}}{2\times 3}
Πολλαπλασιάστε το -12 επί 4.
x=\frac{-8±\sqrt{16}}{2\times 3}
Προσθέστε το 64 και το -48.
x=\frac{-8±4}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 16.
x=\frac{-8±4}{6}
Πολλαπλασιάστε το 2 επί 3.
x=-\frac{4}{6}
Λύστε τώρα την εξίσωση x=\frac{-8±4}{6} όταν το ± είναι συν. Προσθέστε το -8 και το 4.
x=-\frac{2}{3}
Μειώστε το κλάσμα \frac{-4}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=-\frac{12}{6}
Λύστε τώρα την εξίσωση x=\frac{-8±4}{6} όταν το ± είναι μείον. Αφαιρέστε 4 από -8.
x=-2
Διαιρέστε το -12 με το 6.
x=-\frac{2}{3} x=-2
Η εξίσωση έχει πλέον λυθεί.
3x^{2}+8x+4=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
3x^{2}+8x+4-4=-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
3x^{2}+8x=-4
Η αφαίρεση του 4 από τον εαυτό έχει ως αποτέλεσμα 0.
\frac{3x^{2}+8x}{3}=-\frac{4}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
Διαιρέστε το \frac{8}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{4}{3}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{4}{3} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Υψώστε το \frac{4}{3} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Προσθέστε το -\frac{4}{3} και το \frac{16}{9} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
Παραγον x^{2}+\frac{8}{3}x+\frac{16}{9}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
Απλοποιήστε.
x=-\frac{2}{3} x=-2
Αφαιρέστε \frac{4}{3} και από τις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}