Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=5 ab=3\times 2=6
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx+2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,6 2,3
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 6.
1+6=7 2+3=5
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=2 b=3
Η λύση είναι το ζεύγος που δίνει άθροισμα 5.
\left(3x^{2}+2x\right)+\left(3x+2\right)
Γράψτε πάλι το 3x^{2}+5x+2 ως \left(3x^{2}+2x\right)+\left(3x+2\right).
x\left(3x+2\right)+3x+2
Παραγοντοποιήστε το x στην εξίσωση 3x^{2}+2x.
\left(3x+2\right)\left(x+1\right)
Παραγοντοποιήστε τον κοινό όρο 3x+2 χρησιμοποιώντας επιμεριστική ιδιότητα.
3x^{2}+5x+2=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 2}}{2\times 3}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-5±\sqrt{25-4\times 3\times 2}}{2\times 3}
Υψώστε το 5 στο τετράγωνο.
x=\frac{-5±\sqrt{25-12\times 2}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-5±\sqrt{25-24}}{2\times 3}
Πολλαπλασιάστε το -12 επί 2.
x=\frac{-5±\sqrt{1}}{2\times 3}
Προσθέστε το 25 και το -24.
x=\frac{-5±1}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 1.
x=\frac{-5±1}{6}
Πολλαπλασιάστε το 2 επί 3.
x=-\frac{4}{6}
Λύστε τώρα την εξίσωση x=\frac{-5±1}{6} όταν το ± είναι συν. Προσθέστε το -5 και το 1.
x=-\frac{2}{3}
Μειώστε το κλάσμα \frac{-4}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=-\frac{6}{6}
Λύστε τώρα την εξίσωση x=\frac{-5±1}{6} όταν το ± είναι μείον. Αφαιρέστε 1 από -5.
x=-1
Διαιρέστε το -6 με το 6.
3x^{2}+5x+2=3\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-1\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το -\frac{2}{3} με το x_{1} και το -1 με το x_{2}.
3x^{2}+5x+2=3\left(x+\frac{2}{3}\right)\left(x+1\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
3x^{2}+5x+2=3\times \frac{3x+2}{3}\left(x+1\right)
Προσθέστε το \frac{2}{3} και το x βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
3x^{2}+5x+2=\left(3x+2\right)\left(x+1\right)
Ακύρωση του μέγιστου κοινού παράγοντα 3 σε 3 και 3.