Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=2 ab=3\left(-5\right)=-15
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx-5. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,15 -3,5
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -15.
-1+15=14 -3+5=2
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-3 b=5
Η λύση είναι το ζεύγος που δίνει άθροισμα 2.
\left(3x^{2}-3x\right)+\left(5x-5\right)
Γράψτε πάλι το 3x^{2}+2x-5 ως \left(3x^{2}-3x\right)+\left(5x-5\right).
3x\left(x-1\right)+5\left(x-1\right)
Παραγοντοποιήστε 3x στο πρώτο και στο 5 της δεύτερης ομάδας.
\left(x-1\right)\left(3x+5\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
3x^{2}+2x-5=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-5\right)}}{2\times 3}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-2±\sqrt{4-4\times 3\left(-5\right)}}{2\times 3}
Υψώστε το 2 στο τετράγωνο.
x=\frac{-2±\sqrt{4-12\left(-5\right)}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-2±\sqrt{4+60}}{2\times 3}
Πολλαπλασιάστε το -12 επί -5.
x=\frac{-2±\sqrt{64}}{2\times 3}
Προσθέστε το 4 και το 60.
x=\frac{-2±8}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 64.
x=\frac{-2±8}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{6}{6}
Λύστε τώρα την εξίσωση x=\frac{-2±8}{6} όταν το ± είναι συν. Προσθέστε το -2 και το 8.
x=1
Διαιρέστε το 6 με το 6.
x=-\frac{10}{6}
Λύστε τώρα την εξίσωση x=\frac{-2±8}{6} όταν το ± είναι μείον. Αφαιρέστε 8 από -2.
x=-\frac{5}{3}
Μειώστε το κλάσμα \frac{-10}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
3x^{2}+2x-5=3\left(x-1\right)\left(x-\left(-\frac{5}{3}\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 1 με το x_{1} και το -\frac{5}{3} με το x_{2}.
3x^{2}+2x-5=3\left(x-1\right)\left(x+\frac{5}{3}\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
3x^{2}+2x-5=3\left(x-1\right)\times \frac{3x+5}{3}
Προσθέστε το \frac{5}{3} και το x βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
3x^{2}+2x-5=\left(x-1\right)\left(3x+5\right)
Ακύρωση του μέγιστου κοινού παράγοντα 3 σε 3 και 3.