Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{\left(3x+2\right)\left(3x+2\right)}{3x+2}+\frac{4}{3x+2}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 3x+2 επί \frac{3x+2}{3x+2}.
\frac{\left(3x+2\right)\left(3x+2\right)+4}{3x+2}
Από τη στιγμή που οι αριθμοί \frac{\left(3x+2\right)\left(3x+2\right)}{3x+2} και \frac{4}{3x+2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{9x^{2}+6x+6x+4+4}{3x+2}
Κάντε τους πολλαπλασιασμούς στο \left(3x+2\right)\left(3x+2\right)+4.
\frac{9x^{2}+12x+8}{3x+2}
Συνδυάστε παρόμοιους όρους στο 9x^{2}+6x+6x+4+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x+2\right)\left(3x+2\right)}{3x+2}+\frac{4}{3x+2})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 3x+2 επί \frac{3x+2}{3x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x+2\right)\left(3x+2\right)+4}{3x+2})
Από τη στιγμή που οι αριθμοί \frac{\left(3x+2\right)\left(3x+2\right)}{3x+2} και \frac{4}{3x+2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x^{2}+6x+6x+4+4}{3x+2})
Κάντε τους πολλαπλασιασμούς στο \left(3x+2\right)\left(3x+2\right)+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x^{2}+12x+8}{3x+2})
Συνδυάστε παρόμοιους όρους στο 9x^{2}+6x+6x+4+4.
\frac{\left(3x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(9x^{2}+12x^{1}+8)-\left(9x^{2}+12x^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+2)}{\left(3x^{1}+2\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(3x^{1}+2\right)\left(2\times 9x^{2-1}+12x^{1-1}\right)-\left(9x^{2}+12x^{1}+8\right)\times 3x^{1-1}}{\left(3x^{1}+2\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(3x^{1}+2\right)\left(18x^{1}+12x^{0}\right)-\left(9x^{2}+12x^{1}+8\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Απλοποιήστε.
\frac{3x^{1}\times 18x^{1}+3x^{1}\times 12x^{0}+2\times 18x^{1}+2\times 12x^{0}-\left(9x^{2}+12x^{1}+8\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Πολλαπλασιάστε το 3x^{1}+2 επί 18x^{1}+12x^{0}.
\frac{3x^{1}\times 18x^{1}+3x^{1}\times 12x^{0}+2\times 18x^{1}+2\times 12x^{0}-\left(9x^{2}\times 3x^{0}+12x^{1}\times 3x^{0}+8\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Πολλαπλασιάστε το 9x^{2}+12x^{1}+8 επί 3x^{0}.
\frac{3\times 18x^{1+1}+3\times 12x^{1}+2\times 18x^{1}+2\times 12x^{0}-\left(9\times 3x^{2}+12\times 3x^{1}+8\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{54x^{2}+36x^{1}+36x^{1}+24x^{0}-\left(27x^{2}+36x^{1}+24x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Απλοποιήστε.
\frac{27x^{2}+36x^{1}}{\left(3x^{1}+2\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{27x^{2}+36x}{\left(3x+2\right)^{2}}
Για κάθε όρο t, t^{1}=t.