Υπολογισμός
\frac{9x^{2}+12x+8}{3x+2}
Διαφόριση ως προς x
\frac{9x\left(3x+4\right)}{\left(3x+2\right)^{2}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{\left(3x+2\right)\left(3x+2\right)}{3x+2}+\frac{4}{3x+2}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 3x+2 επί \frac{3x+2}{3x+2}.
\frac{\left(3x+2\right)\left(3x+2\right)+4}{3x+2}
Από τη στιγμή που οι αριθμοί \frac{\left(3x+2\right)\left(3x+2\right)}{3x+2} και \frac{4}{3x+2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{9x^{2}+6x+6x+4+4}{3x+2}
Κάντε τους πολλαπλασιασμούς στο \left(3x+2\right)\left(3x+2\right)+4.
\frac{9x^{2}+12x+8}{3x+2}
Συνδυάστε παρόμοιους όρους στο 9x^{2}+6x+6x+4+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x+2\right)\left(3x+2\right)}{3x+2}+\frac{4}{3x+2})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 3x+2 επί \frac{3x+2}{3x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x+2\right)\left(3x+2\right)+4}{3x+2})
Από τη στιγμή που οι αριθμοί \frac{\left(3x+2\right)\left(3x+2\right)}{3x+2} και \frac{4}{3x+2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x^{2}+6x+6x+4+4}{3x+2})
Κάντε τους πολλαπλασιασμούς στο \left(3x+2\right)\left(3x+2\right)+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x^{2}+12x+8}{3x+2})
Συνδυάστε παρόμοιους όρους στο 9x^{2}+6x+6x+4+4.
\frac{\left(3x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(9x^{2}+12x^{1}+8)-\left(9x^{2}+12x^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+2)}{\left(3x^{1}+2\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(3x^{1}+2\right)\left(2\times 9x^{2-1}+12x^{1-1}\right)-\left(9x^{2}+12x^{1}+8\right)\times 3x^{1-1}}{\left(3x^{1}+2\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(3x^{1}+2\right)\left(18x^{1}+12x^{0}\right)-\left(9x^{2}+12x^{1}+8\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Απλοποιήστε.
\frac{3x^{1}\times 18x^{1}+3x^{1}\times 12x^{0}+2\times 18x^{1}+2\times 12x^{0}-\left(9x^{2}+12x^{1}+8\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Πολλαπλασιάστε το 3x^{1}+2 επί 18x^{1}+12x^{0}.
\frac{3x^{1}\times 18x^{1}+3x^{1}\times 12x^{0}+2\times 18x^{1}+2\times 12x^{0}-\left(9x^{2}\times 3x^{0}+12x^{1}\times 3x^{0}+8\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Πολλαπλασιάστε το 9x^{2}+12x^{1}+8 επί 3x^{0}.
\frac{3\times 18x^{1+1}+3\times 12x^{1}+2\times 18x^{1}+2\times 12x^{0}-\left(9\times 3x^{2}+12\times 3x^{1}+8\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{54x^{2}+36x^{1}+36x^{1}+24x^{0}-\left(27x^{2}+36x^{1}+24x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Απλοποιήστε.
\frac{27x^{2}+36x^{1}}{\left(3x^{1}+2\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{27x^{2}+36x}{\left(3x+2\right)^{2}}
Για κάθε όρο t, t^{1}=t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}