Λύση ως προς x
x=\frac{1}{2}=0,5
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(2x-1\right)^{2}=0
Διαιρέστε και τις δύο πλευρές με 3. Το πηλίκο της διαίρεσης του μηδέν με οποιονδήποτε μη μηδενικό αριθμό ισούται με μηδέν.
4x^{2}-4x+1=0
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(2x-1\right)^{2}.
a+b=-4 ab=4\times 1=4
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 4x^{2}+ax+bx+1. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-4 -2,-2
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 4.
-1-4=-5 -2-2=-4
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-2 b=-2
Η λύση είναι το ζεύγος που δίνει άθροισμα -4.
\left(4x^{2}-2x\right)+\left(-2x+1\right)
Γράψτε πάλι το 4x^{2}-4x+1 ως \left(4x^{2}-2x\right)+\left(-2x+1\right).
2x\left(2x-1\right)-\left(2x-1\right)
Παραγοντοποιήστε 2x στο πρώτο και στο -1 της δεύτερης ομάδας.
\left(2x-1\right)\left(2x-1\right)
Παραγοντοποιήστε τον κοινό όρο 2x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(2x-1\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=\frac{1}{2}
Για να βρείτε τη λύση της εξίσωσης, λύστε το 2x-1=0.
\left(2x-1\right)^{2}=0
Διαιρέστε και τις δύο πλευρές με 3. Το πηλίκο της διαίρεσης του μηδέν με οποιονδήποτε μη μηδενικό αριθμό ισούται με μηδέν.
4x^{2}-4x+1=0
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(2x-1\right)^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 4, το b με -4 και το c με 1 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
Υψώστε το -4 στο τετράγωνο.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
Πολλαπλασιάστε το -4 επί 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
Προσθέστε το 16 και το -16.
x=-\frac{-4}{2\times 4}
Λάβετε την τετραγωνική ρίζα του 0.
x=\frac{4}{2\times 4}
Το αντίθετο ενός αριθμού -4 είναι 4.
x=\frac{4}{8}
Πολλαπλασιάστε το 2 επί 4.
x=\frac{1}{2}
Μειώστε το κλάσμα \frac{4}{8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 4.
\left(2x-1\right)^{2}=0
Διαιρέστε και τις δύο πλευρές με 3. Το πηλίκο της διαίρεσης του μηδέν με οποιονδήποτε μη μηδενικό αριθμό ισούται με μηδέν.
4x^{2}-4x+1=0
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(2x-1\right)^{2}.
4x^{2}-4x=-1
Αφαιρέστε 1 και από τις δύο πλευρές. Το υπόλοιπο της αφαίρεσης οποιουδήποτε αριθμού από το μηδέν ισούται με τον αντίστοιχο αρνητικό αριθμό.
\frac{4x^{2}-4x}{4}=-\frac{1}{4}
Διαιρέστε και τις δύο πλευρές με 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{1}{4}
Η διαίρεση με το 4 αναιρεί τον πολλαπλασιασμό με το 4.
x^{2}-x=-\frac{1}{4}
Διαιρέστε το -4 με το 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Διαιρέστε το -1, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-x+\frac{1}{4}=\frac{-1+1}{4}
Υψώστε το -\frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-x+\frac{1}{4}=0
Προσθέστε το -\frac{1}{4} και το \frac{1}{4} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{1}{2}\right)^{2}=0
Παραγον x^{2}-x+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{0}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{1}{2}=0 x-\frac{1}{2}=0
Απλοποιήστε.
x=\frac{1}{2} x=\frac{1}{2}
Προσθέστε \frac{1}{2} και στις δύο πλευρές της εξίσωσης.
x=\frac{1}{2}
Η εξίσωση έχει πλέον λυθεί. Οι λύσεις είναι ίδιες.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}