Skip to main content
$3 \exponential{(x)}{4} + \exponential{(x)}{3} + 2 \exponential{(x)}{2} + 4 x - 40 $
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

3x^{4}+x^{3}+2x^{2}+4x-40=0
Για να παραγοντοποιήσετε την παράσταση, λύστε την εξίσωση όπου ισούται με 0.
±\frac{40}{3},±40,±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{8}{3},±8,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
Από το θεώρημα της ορθοΛογικής ρίζας, όλες οι ορθολογικές ρίζες ενός πολυωνύμου είναι στη μορφή \frac{p}{q}, όπου p διαιρεί τον σταθερό όρο -40 και q διαιρεί τον κορυφαίο συντελεστή 3. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
3x^{3}-5x^{2}+12x-20=0
Κατά θεώρημα Factor, x-k είναι ένας παράγοντας του πολυωνύμου για κάθε ριζική k. Διαιρέστε το 3x^{4}+x^{3}+2x^{2}+4x-40 με το x+2 για να λάβετε 3x^{3}-5x^{2}+12x-20. Για να υπολογίσετε το αποτέλεσμα, λύστε την εξίσωση όπου ισούται με 0.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
Από το θεώρημα της ορθοΛογικής ρίζας, όλες οι ορθολογικές ρίζες ενός πολυωνύμου είναι στη μορφή \frac{p}{q}, όπου p διαιρεί τον σταθερό όρο -20 και q διαιρεί τον κορυφαίο συντελεστή 3. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=\frac{5}{3}
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+4=0
Κατά θεώρημα Factor, x-k είναι ένας παράγοντας του πολυωνύμου για κάθε ριζική k. Διαιρέστε το 3x^{3}-5x^{2}+12x-20 με το 3\left(x-\frac{5}{3}\right)=3x-5 για να λάβετε x^{2}+4. Για να υπολογίσετε το αποτέλεσμα, λύστε την εξίσωση όπου ισούται με 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 0 για b και 4 για c στον πολυωνυμικό τύπου.
x=\frac{0±\sqrt{-16}}{2}
Κάντε τους υπολογισμούς.
x^{2}+4
Το πολυώνυμο x^{2}+4 δεν έχει παραγοντοποιηθεί, επειδή δεν έχει λογικές ρίζες.
\left(3x-5\right)\left(x+2\right)\left(x^{2}+4\right)
Γράψτε ξανά την παραγοντοποιημένη παράσταση χρησιμοποιώντας τις ρίζες που έχουν ληφθεί.