Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=-5 ab=3\times 2=6
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx+2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-6 -2,-3
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 6.
-1-6=-7 -2-3=-5
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-3 b=-2
Η λύση είναι το ζεύγος που δίνει άθροισμα -5.
\left(3x^{2}-3x\right)+\left(-2x+2\right)
Γράψτε πάλι το 3x^{2}-5x+2 ως \left(3x^{2}-3x\right)+\left(-2x+2\right).
3x\left(x-1\right)-2\left(x-1\right)
Παραγοντοποιήστε 3x στο πρώτο και στο -2 της δεύτερης ομάδας.
\left(x-1\right)\left(3x-2\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=1 x=\frac{2}{3}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-1=0 και 3x-2=0.
3x^{2}-5x+2=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\times 2}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με -5 και το c με 2 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\times 2}}{2\times 3}
Υψώστε το -5 στο τετράγωνο.
x=\frac{-\left(-5\right)±\sqrt{25-12\times 2}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2\times 3}
Πολλαπλασιάστε το -12 επί 2.
x=\frac{-\left(-5\right)±\sqrt{1}}{2\times 3}
Προσθέστε το 25 και το -24.
x=\frac{-\left(-5\right)±1}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 1.
x=\frac{5±1}{2\times 3}
Το αντίθετο ενός αριθμού -5 είναι 5.
x=\frac{5±1}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{6}{6}
Λύστε τώρα την εξίσωση x=\frac{5±1}{6} όταν το ± είναι συν. Προσθέστε το 5 και το 1.
x=1
Διαιρέστε το 6 με το 6.
x=\frac{4}{6}
Λύστε τώρα την εξίσωση x=\frac{5±1}{6} όταν το ± είναι μείον. Αφαιρέστε 1 από 5.
x=\frac{2}{3}
Μειώστε το κλάσμα \frac{4}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=1 x=\frac{2}{3}
Η εξίσωση έχει πλέον λυθεί.
3x^{2}-5x+2=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
3x^{2}-5x+2-2=-2
Αφαιρέστε 2 και από τις δύο πλευρές της εξίσωσης.
3x^{2}-5x=-2
Η αφαίρεση του 2 από τον εαυτό έχει ως αποτέλεσμα 0.
\frac{3x^{2}-5x}{3}=-\frac{2}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}-\frac{5}{3}x=-\frac{2}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
Διαιρέστε το -\frac{5}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{6}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{6} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{2}{3}+\frac{25}{36}
Υψώστε το -\frac{5}{6} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{1}{36}
Προσθέστε το -\frac{2}{3} και το \frac{25}{36} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{5}{6}\right)^{2}=\frac{1}{36}
Παραγον x^{2}-\frac{5}{3}x+\frac{25}{36}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{6}=\frac{1}{6} x-\frac{5}{6}=-\frac{1}{6}
Απλοποιήστε.
x=1 x=\frac{2}{3}
Προσθέστε \frac{5}{6} και στις δύο πλευρές της εξίσωσης.