Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=5 ab=3\left(-2\right)=-6
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx-2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,6 -2,3
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -6.
-1+6=5 -2+3=1
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-1 b=6
Η λύση είναι το ζεύγος που δίνει άθροισμα 5.
\left(3x^{2}-x\right)+\left(6x-2\right)
Γράψτε πάλι το 3x^{2}+5x-2 ως \left(3x^{2}-x\right)+\left(6x-2\right).
x\left(3x-1\right)+2\left(3x-1\right)
Παραγοντοποιήστε x στο πρώτο και στο 2 της δεύτερης ομάδας.
\left(3x-1\right)\left(x+2\right)
Παραγοντοποιήστε τον κοινό όρο 3x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
3x^{2}+5x-2=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Υψώστε το 5 στο τετράγωνο.
x=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-5±\sqrt{25+24}}{2\times 3}
Πολλαπλασιάστε το -12 επί -2.
x=\frac{-5±\sqrt{49}}{2\times 3}
Προσθέστε το 25 και το 24.
x=\frac{-5±7}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 49.
x=\frac{-5±7}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{2}{6}
Λύστε τώρα την εξίσωση x=\frac{-5±7}{6} όταν το ± είναι συν. Προσθέστε το -5 και το 7.
x=\frac{1}{3}
Μειώστε το κλάσμα \frac{2}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=-\frac{12}{6}
Λύστε τώρα την εξίσωση x=\frac{-5±7}{6} όταν το ± είναι μείον. Αφαιρέστε 7 από -5.
x=-2
Διαιρέστε το -12 με το 6.
3x^{2}+5x-2=3\left(x-\frac{1}{3}\right)\left(x-\left(-2\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το \frac{1}{3} με το x_{1} και το -2 με το x_{2}.
3x^{2}+5x-2=3\left(x-\frac{1}{3}\right)\left(x+2\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
3x^{2}+5x-2=3\times \frac{3x-1}{3}\left(x+2\right)
Αφαιρέστε x από \frac{1}{3} βρίσκοντας έναν κοινό παρονομαστή και αφαιρώντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
3x^{2}+5x-2=\left(3x-1\right)\left(x+2\right)
Ακύρωση του μέγιστου κοινού παράγοντα 3 σε 3 και 3.