Λύση ως προς x
x=-\frac{1}{2}=-0,5
x=\frac{1}{4}=0,25
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2x-1+8x^{2}=0
Προσθήκη 8x^{2} και στις δύο πλευρές.
8x^{2}+2x-1=0
Αναδιατάξτε το πολυώνυμο για να το θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
a+b=2 ab=8\left(-1\right)=-8
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 8x^{2}+ax+bx-1. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,8 -2,4
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -8.
-1+8=7 -2+4=2
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-2 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 2.
\left(8x^{2}-2x\right)+\left(4x-1\right)
Γράψτε πάλι το 8x^{2}+2x-1 ως \left(8x^{2}-2x\right)+\left(4x-1\right).
2x\left(4x-1\right)+4x-1
Παραγοντοποιήστε το 2x στην εξίσωση 8x^{2}-2x.
\left(4x-1\right)\left(2x+1\right)
Παραγοντοποιήστε τον κοινό όρο 4x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=\frac{1}{4} x=-\frac{1}{2}
Για να βρείτε λύσεις εξίσωσης, να λύσετε 4x-1=0 και 2x+1=0.
2x-1+8x^{2}=0
Προσθήκη 8x^{2} και στις δύο πλευρές.
8x^{2}+2x-1=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-2±\sqrt{2^{2}-4\times 8\left(-1\right)}}{2\times 8}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 8, το b με 2 και το c με -1 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 8\left(-1\right)}}{2\times 8}
Υψώστε το 2 στο τετράγωνο.
x=\frac{-2±\sqrt{4-32\left(-1\right)}}{2\times 8}
Πολλαπλασιάστε το -4 επί 8.
x=\frac{-2±\sqrt{4+32}}{2\times 8}
Πολλαπλασιάστε το -32 επί -1.
x=\frac{-2±\sqrt{36}}{2\times 8}
Προσθέστε το 4 και το 32.
x=\frac{-2±6}{2\times 8}
Λάβετε την τετραγωνική ρίζα του 36.
x=\frac{-2±6}{16}
Πολλαπλασιάστε το 2 επί 8.
x=\frac{4}{16}
Λύστε τώρα την εξίσωση x=\frac{-2±6}{16} όταν το ± είναι συν. Προσθέστε το -2 και το 6.
x=\frac{1}{4}
Μειώστε το κλάσμα \frac{4}{16} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 4.
x=-\frac{8}{16}
Λύστε τώρα την εξίσωση x=\frac{-2±6}{16} όταν το ± είναι μείον. Αφαιρέστε 6 από -2.
x=-\frac{1}{2}
Μειώστε το κλάσμα \frac{-8}{16} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 8.
x=\frac{1}{4} x=-\frac{1}{2}
Η εξίσωση έχει πλέον λυθεί.
2x-1+8x^{2}=0
Προσθήκη 8x^{2} και στις δύο πλευρές.
2x+8x^{2}=1
Προσθήκη 1 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
8x^{2}+2x=1
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{8x^{2}+2x}{8}=\frac{1}{8}
Διαιρέστε και τις δύο πλευρές με 8.
x^{2}+\frac{2}{8}x=\frac{1}{8}
Η διαίρεση με το 8 αναιρεί τον πολλαπλασιασμό με το 8.
x^{2}+\frac{1}{4}x=\frac{1}{8}
Μειώστε το κλάσμα \frac{2}{8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{1}{8}+\left(\frac{1}{8}\right)^{2}
Διαιρέστε το \frac{1}{4}, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{1}{8}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{1}{8} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{8}+\frac{1}{64}
Υψώστε το \frac{1}{8} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{9}{64}
Προσθέστε το \frac{1}{8} και το \frac{1}{64} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x+\frac{1}{8}\right)^{2}=\frac{9}{64}
Παραγον x^{2}+\frac{1}{4}x+\frac{1}{64}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{1}{8}=\frac{3}{8} x+\frac{1}{8}=-\frac{3}{8}
Απλοποιήστε.
x=\frac{1}{4} x=-\frac{1}{2}
Αφαιρέστε \frac{1}{8} και από τις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}