Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

2x^{2}-4x=6
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x με το x-2.
2x^{2}-4x-6=0
Αφαιρέστε 6 και από τις δύο πλευρές.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 2, το b με -4 και το c με -6 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Υψώστε το -4 στο τετράγωνο.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
Πολλαπλασιάστε το -8 επί -6.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
Προσθέστε το 16 και το 48.
x=\frac{-\left(-4\right)±8}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 64.
x=\frac{4±8}{2\times 2}
Το αντίθετο ενός αριθμού -4 είναι 4.
x=\frac{4±8}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{12}{4}
Λύστε τώρα την εξίσωση x=\frac{4±8}{4} όταν το ± είναι συν. Προσθέστε το 4 και το 8.
x=3
Διαιρέστε το 12 με το 4.
x=-\frac{4}{4}
Λύστε τώρα την εξίσωση x=\frac{4±8}{4} όταν το ± είναι μείον. Αφαιρέστε 8 από 4.
x=-1
Διαιρέστε το -4 με το 4.
x=3 x=-1
Η εξίσωση έχει πλέον λυθεί.
2x^{2}-4x=6
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x με το x-2.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
Διαιρέστε και τις δύο πλευρές με 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
Η διαίρεση με το 2 αναιρεί τον πολλαπλασιασμό με το 2.
x^{2}-2x=\frac{6}{2}
Διαιρέστε το -4 με το 2.
x^{2}-2x=3
Διαιρέστε το 6 με το 2.
x^{2}-2x+1=3+1
Διαιρέστε το -2, τον συντελεστή του όρου x, με το 2 για να λάβετε -1. Στη συνέχεια, προσθέστε το τετράγωνο του -1 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-2x+1=4
Προσθέστε το 3 και το 1.
\left(x-1\right)^{2}=4
Παραγον x^{2}-2x+1. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-1=2 x-1=-2
Απλοποιήστε.
x=3 x=-1
Προσθέστε 1 και στις δύο πλευρές της εξίσωσης.