Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

±14,±28,±7,±\frac{7}{2},±2,±4,±1,±\frac{1}{2}
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 28 όρων και q διαιρείται τον αρχικό συντελεστή 2. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
2x^{3}-7x^{2}+4x-14=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 2x^{4}-11x^{3}+18x^{2}-22x+28 με το x-2 για να λάβετε 2x^{3}-7x^{2}+4x-14. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
±7,±14,±\frac{7}{2},±1,±2,±\frac{1}{2}
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -14 όρων και q διαιρείται τον αρχικό συντελεστή 2. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=\frac{7}{2}
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+2=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 2x^{3}-7x^{2}+4x-14 με το 2\left(x-\frac{7}{2}\right)=2x-7 για να λάβετε x^{2}+2. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 2}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 0 για b και 2 για c στον πολυωνυμικό τύπου.
x=\frac{0±\sqrt{-8}}{2}
Κάντε τους υπολογισμούς.
x=-\sqrt{2}i x=\sqrt{2}i
Επιλύστε την εξίσωση x^{2}+2=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=2 x=\frac{7}{2} x=-\sqrt{2}i x=\sqrt{2}i
Λίστα όλων των λύσεων που βρέθηκαν.
±14,±28,±7,±\frac{7}{2},±2,±4,±1,±\frac{1}{2}
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 28 όρων και q διαιρείται τον αρχικό συντελεστή 2. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
2x^{3}-7x^{2}+4x-14=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 2x^{4}-11x^{3}+18x^{2}-22x+28 με το x-2 για να λάβετε 2x^{3}-7x^{2}+4x-14. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
±7,±14,±\frac{7}{2},±1,±2,±\frac{1}{2}
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -14 όρων και q διαιρείται τον αρχικό συντελεστή 2. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=\frac{7}{2}
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+2=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 2x^{3}-7x^{2}+4x-14 με το 2\left(x-\frac{7}{2}\right)=2x-7 για να λάβετε x^{2}+2. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 2}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 0 για b και 2 για c στον πολυωνυμικό τύπου.
x=\frac{0±\sqrt{-8}}{2}
Κάντε τους υπολογισμούς.
x\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
x=2 x=\frac{7}{2}
Λίστα όλων των λύσεων που βρέθηκαν.