Παράγοντας
\left(x-9\right)\left(2x+9\right)
Υπολογισμός
\left(x-9\right)\left(2x+9\right)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=-9 ab=2\left(-81\right)=-162
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 2x^{2}+ax+bx-81. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-162 2,-81 3,-54 6,-27 9,-18
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -162.
1-162=-161 2-81=-79 3-54=-51 6-27=-21 9-18=-9
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-18 b=9
Η λύση είναι το ζεύγος που δίνει άθροισμα -9.
\left(2x^{2}-18x\right)+\left(9x-81\right)
Γράψτε πάλι το 2x^{2}-9x-81 ως \left(2x^{2}-18x\right)+\left(9x-81\right).
2x\left(x-9\right)+9\left(x-9\right)
Παραγοντοποιήστε 2x στο πρώτο και στο 9 της δεύτερης ομάδας.
\left(x-9\right)\left(2x+9\right)
Παραγοντοποιήστε τον κοινό όρο x-9 χρησιμοποιώντας επιμεριστική ιδιότητα.
2x^{2}-9x-81=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-81\right)}}{2\times 2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-81\right)}}{2\times 2}
Υψώστε το -9 στο τετράγωνο.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-81\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-9\right)±\sqrt{81+648}}{2\times 2}
Πολλαπλασιάστε το -8 επί -81.
x=\frac{-\left(-9\right)±\sqrt{729}}{2\times 2}
Προσθέστε το 81 και το 648.
x=\frac{-\left(-9\right)±27}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 729.
x=\frac{9±27}{2\times 2}
Το αντίθετο ενός αριθμού -9 είναι 9.
x=\frac{9±27}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{36}{4}
Λύστε τώρα την εξίσωση x=\frac{9±27}{4} όταν το ± είναι συν. Προσθέστε το 9 και το 27.
x=9
Διαιρέστε το 36 με το 4.
x=-\frac{18}{4}
Λύστε τώρα την εξίσωση x=\frac{9±27}{4} όταν το ± είναι μείον. Αφαιρέστε 27 από 9.
x=-\frac{9}{2}
Μειώστε το κλάσμα \frac{-18}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
2x^{2}-9x-81=2\left(x-9\right)\left(x-\left(-\frac{9}{2}\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 9 με το x_{1} και το -\frac{9}{2} με το x_{2}.
2x^{2}-9x-81=2\left(x-9\right)\left(x+\frac{9}{2}\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
2x^{2}-9x-81=2\left(x-9\right)\times \frac{2x+9}{2}
Προσθέστε το \frac{9}{2} και το x βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
2x^{2}-9x-81=\left(x-9\right)\left(2x+9\right)
Ακύρωση του μέγιστου κοινού παράγοντα 2 σε 2 και 2.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}