Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

2\left(x^{2}-4x-12\right)
Παραγοντοποιήστε το 2.
a+b=-4 ab=1\left(-12\right)=-12
Υπολογίστε x^{2}-4x-12. Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-12. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-12 2,-6 3,-4
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -12.
1-12=-11 2-6=-4 3-4=-1
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-6 b=2
Η λύση είναι το ζεύγος που δίνει άθροισμα -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Γράψτε πάλι το x^{2}-4x-12 ως \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Παραγοντοποιήστε x στο πρώτο και στο 2 της δεύτερης ομάδας.
\left(x-6\right)\left(x+2\right)
Παραγοντοποιήστε τον κοινό όρο x-6 χρησιμοποιώντας επιμεριστική ιδιότητα.
2\left(x-6\right)\left(x+2\right)
Γράψτε ξανά την πλήρη παραγοντοποιημένη παράσταση.
2x^{2}-8x-24=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
Υψώστε το -8 στο τετράγωνο.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
Πολλαπλασιάστε το -8 επί -24.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
Προσθέστε το 64 και το 192.
x=\frac{-\left(-8\right)±16}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 256.
x=\frac{8±16}{2\times 2}
Το αντίθετο ενός αριθμού -8 είναι 8.
x=\frac{8±16}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{24}{4}
Λύστε τώρα την εξίσωση x=\frac{8±16}{4} όταν το ± είναι συν. Προσθέστε το 8 και το 16.
x=6
Διαιρέστε το 24 με το 4.
x=-\frac{8}{4}
Λύστε τώρα την εξίσωση x=\frac{8±16}{4} όταν το ± είναι μείον. Αφαιρέστε 16 από 8.
x=-2
Διαιρέστε το -8 με το 4.
2x^{2}-8x-24=2\left(x-6\right)\left(x-\left(-2\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 6 με το x_{1} και το -2 με το x_{2}.
2x^{2}-8x-24=2\left(x-6\right)\left(x+2\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.