Λύση ως προς x
x=-4
x = \frac{9}{2} = 4\frac{1}{2} = 4,5
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2x^{2}-36-x=0
Αφαιρέστε x και από τις δύο πλευρές.
2x^{2}-x-36=0
Αναδιατάξτε το πολυώνυμο για να το θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
a+b=-1 ab=2\left(-36\right)=-72
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 2x^{2}+ax+bx-36. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-9 b=8
Η λύση είναι το ζεύγος που δίνει άθροισμα -1.
\left(2x^{2}-9x\right)+\left(8x-36\right)
Γράψτε πάλι το 2x^{2}-x-36 ως \left(2x^{2}-9x\right)+\left(8x-36\right).
x\left(2x-9\right)+4\left(2x-9\right)
Παραγοντοποιήστε x στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(2x-9\right)\left(x+4\right)
Παραγοντοποιήστε τον κοινό όρο 2x-9 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=\frac{9}{2} x=-4
Για να βρείτε λύσεις εξίσωσης, να λύσετε 2x-9=0 και x+4=0.
2x^{2}-36-x=0
Αφαιρέστε x και από τις δύο πλευρές.
2x^{2}-x-36=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-36\right)}}{2\times 2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 2, το b με -1 και το c με -36 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-36\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 2}
Πολλαπλασιάστε το -8 επί -36.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 2}
Προσθέστε το 1 και το 288.
x=\frac{-\left(-1\right)±17}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 289.
x=\frac{1±17}{2\times 2}
Το αντίθετο ενός αριθμού -1 είναι 1.
x=\frac{1±17}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{18}{4}
Λύστε τώρα την εξίσωση x=\frac{1±17}{4} όταν το ± είναι συν. Προσθέστε το 1 και το 17.
x=\frac{9}{2}
Μειώστε το κλάσμα \frac{18}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=-\frac{16}{4}
Λύστε τώρα την εξίσωση x=\frac{1±17}{4} όταν το ± είναι μείον. Αφαιρέστε 17 από 1.
x=-4
Διαιρέστε το -16 με το 4.
x=\frac{9}{2} x=-4
Η εξίσωση έχει πλέον λυθεί.
2x^{2}-36-x=0
Αφαιρέστε x και από τις δύο πλευρές.
2x^{2}-x=36
Προσθήκη 36 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\frac{2x^{2}-x}{2}=\frac{36}{2}
Διαιρέστε και τις δύο πλευρές με 2.
x^{2}-\frac{1}{2}x=\frac{36}{2}
Η διαίρεση με το 2 αναιρεί τον πολλαπλασιασμό με το 2.
x^{2}-\frac{1}{2}x=18
Διαιρέστε το 36 με το 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=18+\left(-\frac{1}{4}\right)^{2}
Διαιρέστε το -\frac{1}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{1}{2}x+\frac{1}{16}=18+\frac{1}{16}
Υψώστε το -\frac{1}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{289}{16}
Προσθέστε το 18 και το \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{289}{16}
Παραγον x^{2}-\frac{1}{2}x+\frac{1}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{1}{4}=\frac{17}{4} x-\frac{1}{4}=-\frac{17}{4}
Απλοποιήστε.
x=\frac{9}{2} x=-4
Προσθέστε \frac{1}{4} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}