Λύση ως προς x
x = -\frac{25}{2} = -12\frac{1}{2} = -12,5
x=12
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2x^{2}+x-300=0
Συνδυάστε το -24x και το 25x για να λάβετε x.
a+b=1 ab=2\left(-300\right)=-600
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 2x^{2}+ax+bx-300. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,600 -2,300 -3,200 -4,150 -5,120 -6,100 -8,75 -10,60 -12,50 -15,40 -20,30 -24,25
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -600.
-1+600=599 -2+300=298 -3+200=197 -4+150=146 -5+120=115 -6+100=94 -8+75=67 -10+60=50 -12+50=38 -15+40=25 -20+30=10 -24+25=1
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-24 b=25
Η λύση είναι το ζεύγος που δίνει άθροισμα 1.
\left(2x^{2}-24x\right)+\left(25x-300\right)
Γράψτε πάλι το 2x^{2}+x-300 ως \left(2x^{2}-24x\right)+\left(25x-300\right).
2x\left(x-12\right)+25\left(x-12\right)
Παραγοντοποιήστε 2x στο πρώτο και στο 25 της δεύτερης ομάδας.
\left(x-12\right)\left(2x+25\right)
Παραγοντοποιήστε τον κοινό όρο x-12 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=12 x=-\frac{25}{2}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-12=0 και 2x+25=0.
2x^{2}+x-300=0
Συνδυάστε το -24x και το 25x για να λάβετε x.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-300\right)}}{2\times 2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 2, το b με 1 και το c με -300 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-300\right)}}{2\times 2}
Υψώστε το 1 στο τετράγωνο.
x=\frac{-1±\sqrt{1-8\left(-300\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-1±\sqrt{1+2400}}{2\times 2}
Πολλαπλασιάστε το -8 επί -300.
x=\frac{-1±\sqrt{2401}}{2\times 2}
Προσθέστε το 1 και το 2400.
x=\frac{-1±49}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 2401.
x=\frac{-1±49}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{48}{4}
Λύστε τώρα την εξίσωση x=\frac{-1±49}{4} όταν το ± είναι συν. Προσθέστε το -1 και το 49.
x=12
Διαιρέστε το 48 με το 4.
x=-\frac{50}{4}
Λύστε τώρα την εξίσωση x=\frac{-1±49}{4} όταν το ± είναι μείον. Αφαιρέστε 49 από -1.
x=-\frac{25}{2}
Μειώστε το κλάσμα \frac{-50}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=12 x=-\frac{25}{2}
Η εξίσωση έχει πλέον λυθεί.
2x^{2}+x-300=0
Συνδυάστε το -24x και το 25x για να λάβετε x.
2x^{2}+x=300
Προσθήκη 300 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\frac{2x^{2}+x}{2}=\frac{300}{2}
Διαιρέστε και τις δύο πλευρές με 2.
x^{2}+\frac{1}{2}x=\frac{300}{2}
Η διαίρεση με το 2 αναιρεί τον πολλαπλασιασμό με το 2.
x^{2}+\frac{1}{2}x=150
Διαιρέστε το 300 με το 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=150+\left(\frac{1}{4}\right)^{2}
Διαιρέστε το \frac{1}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{1}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{1}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+\frac{1}{2}x+\frac{1}{16}=150+\frac{1}{16}
Υψώστε το \frac{1}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{2401}{16}
Προσθέστε το 150 και το \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{2401}{16}
Παραγον x^{2}+\frac{1}{2}x+\frac{1}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{2401}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{1}{4}=\frac{49}{4} x+\frac{1}{4}=-\frac{49}{4}
Απλοποιήστε.
x=12 x=-\frac{25}{2}
Αφαιρέστε \frac{1}{4} και από τις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}