Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}-x-2=0
Διαιρέστε και τις δύο πλευρές με 2.
a+b=-1 ab=1\left(-2\right)=-2
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
a=-2 b=1
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Το μόνο τέτοιο ζεύγος είναι η λύση του συστήματος.
\left(x^{2}-2x\right)+\left(x-2\right)
Γράψτε πάλι το x^{2}-x-2 ως \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Παραγοντοποιήστε το x στην εξίσωση x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Παραγοντοποιήστε τον κοινό όρο x-2 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=2 x=-1
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-2=0 και x+1=0.
2x^{2}-2x-4=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 2, το b με -2 και το c με -4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
Υψώστε το -2 στο τετράγωνο.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-4\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 2}
Πολλαπλασιάστε το -8 επί -4.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times 2}
Προσθέστε το 4 και το 32.
x=\frac{-\left(-2\right)±6}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 36.
x=\frac{2±6}{2\times 2}
Το αντίθετο ενός αριθμού -2 είναι 2.
x=\frac{2±6}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{8}{4}
Λύστε τώρα την εξίσωση x=\frac{2±6}{4} όταν το ± είναι συν. Προσθέστε το 2 και το 6.
x=2
Διαιρέστε το 8 με το 4.
x=-\frac{4}{4}
Λύστε τώρα την εξίσωση x=\frac{2±6}{4} όταν το ± είναι μείον. Αφαιρέστε 6 από 2.
x=-1
Διαιρέστε το -4 με το 4.
x=2 x=-1
Η εξίσωση έχει πλέον λυθεί.
2x^{2}-2x-4=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
2x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
Προσθέστε 4 και στις δύο πλευρές της εξίσωσης.
2x^{2}-2x=-\left(-4\right)
Η αφαίρεση του -4 από τον εαυτό έχει ως αποτέλεσμα 0.
2x^{2}-2x=4
Αφαιρέστε -4 από 0.
\frac{2x^{2}-2x}{2}=\frac{4}{2}
Διαιρέστε και τις δύο πλευρές με 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{4}{2}
Η διαίρεση με το 2 αναιρεί τον πολλαπλασιασμό με το 2.
x^{2}-x=\frac{4}{2}
Διαιρέστε το -2 με το 2.
x^{2}-x=2
Διαιρέστε το 4 με το 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Διαιρέστε το -1, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Υψώστε το -\frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Προσθέστε το 2 και το \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Παραγον x^{2}-x+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Απλοποιήστε.
x=2 x=-1
Προσθέστε \frac{1}{2} και στις δύο πλευρές της εξίσωσης.