Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

2xx^{2}+x^{2}+1=0
Η μεταβλητή x δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x^{2}.
2x^{3}+x^{2}+1=0
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 1 και τον αριθμό 2 για να λάβετε τον αριθμό 3.
±\frac{1}{2},±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 1 όρων και q διαιρείται τον αρχικό συντελεστή 2. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-1
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
2x^{2}-x+1=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 2x^{3}+x^{2}+1 με το x+1 για να λάβετε 2x^{2}-x+1. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 2 για a, -1 για b και 1 για c στον πολυωνυμικό τύπου.
x=\frac{1±\sqrt{-7}}{4}
Κάντε τους υπολογισμούς.
x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
Επιλύστε την εξίσωση 2x^{2}-x+1=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=-1 x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
Λίστα όλων των λύσεων που βρέθηκαν.
2xx^{2}+x^{2}+1=0
Η μεταβλητή x δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x^{2}.
2x^{3}+x^{2}+1=0
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 1 και τον αριθμό 2 για να λάβετε τον αριθμό 3.
±\frac{1}{2},±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 1 όρων και q διαιρείται τον αρχικό συντελεστή 2. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-1
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
2x^{2}-x+1=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 2x^{3}+x^{2}+1 με το x+1 για να λάβετε 2x^{2}-x+1. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 2 για a, -1 για b και 1 για c στον πολυωνυμικό τύπου.
x=\frac{1±\sqrt{-7}}{4}
Κάντε τους υπολογισμούς.
x\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
x=-1
Λίστα όλων των λύσεων που βρέθηκαν.