Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{3}+12x^{2}+24x+8=0
Αναπτύξτε την παράσταση.
±8,±4,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 8 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+10x+4=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}+12x^{2}+24x+8 με το x+2 για να λάβετε x^{2}+10x+4. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 4}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 10 για b και 4 για c στον πολυωνυμικό τύπου.
x=\frac{-10±2\sqrt{21}}{2}
Κάντε τους υπολογισμούς.
x=-\sqrt{21}-5 x=\sqrt{21}-5
Επιλύστε την εξίσωση x^{2}+10x+4=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=-2 x=-\sqrt{21}-5 x=\sqrt{21}-5
Λίστα όλων των λύσεων που βρέθηκαν.