Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=-3 ab=2\left(-2\right)=-4
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 2x^{2}+ax+bx-2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-4 2,-2
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -4.
1-4=-3 2-2=0
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=1
Η λύση είναι το ζεύγος που δίνει άθροισμα -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Γράψτε πάλι το 2x^{2}-3x-2 ως \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Παραγοντοποιήστε το 2x στην εξίσωση 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Παραγοντοποιήστε τον κοινό όρο x-2 χρησιμοποιώντας επιμεριστική ιδιότητα.
2x^{2}-3x-2=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-2\right)}}{2\times 2}
Υψώστε το -3 στο τετράγωνο.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-2\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\times 2}
Πολλαπλασιάστε το -8 επί -2.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\times 2}
Προσθέστε το 9 και το 16.
x=\frac{-\left(-3\right)±5}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 25.
x=\frac{3±5}{2\times 2}
Το αντίθετο ενός αριθμού -3 είναι 3.
x=\frac{3±5}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{8}{4}
Λύστε τώρα την εξίσωση x=\frac{3±5}{4} όταν το ± είναι συν. Προσθέστε το 3 και το 5.
x=2
Διαιρέστε το 8 με το 4.
x=-\frac{2}{4}
Λύστε τώρα την εξίσωση x=\frac{3±5}{4} όταν το ± είναι μείον. Αφαιρέστε 5 από 3.
x=-\frac{1}{2}
Μειώστε το κλάσμα \frac{-2}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
2x^{2}-3x-2=2\left(x-2\right)\left(x-\left(-\frac{1}{2}\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 2 με το x_{1} και το -\frac{1}{2} με το x_{2}.
2x^{2}-3x-2=2\left(x-2\right)\left(x+\frac{1}{2}\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
2x^{2}-3x-2=2\left(x-2\right)\times \frac{2x+1}{2}
Προσθέστε το \frac{1}{2} και το x βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
2x^{2}-3x-2=\left(x-2\right)\left(2x+1\right)
Ακύρωση του μέγιστου κοινού παράγοντα 2 σε 2 και 2.