Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=5 ab=2\times 3=6
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 2x^{2}+ax+bx+3. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,6 2,3
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 6.
1+6=7 2+3=5
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=2 b=3
Η λύση είναι το ζεύγος που δίνει άθροισμα 5.
\left(2x^{2}+2x\right)+\left(3x+3\right)
Γράψτε πάλι το 2x^{2}+5x+3 ως \left(2x^{2}+2x\right)+\left(3x+3\right).
2x\left(x+1\right)+3\left(x+1\right)
Παραγοντοποιήστε 2x στο πρώτο και στο 3 της δεύτερης ομάδας.
\left(x+1\right)\left(2x+3\right)
Παραγοντοποιήστε τον κοινό όρο x+1 χρησιμοποιώντας επιμεριστική ιδιότητα.
2x^{2}+5x+3=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 3}}{2\times 2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-5±\sqrt{25-4\times 2\times 3}}{2\times 2}
Υψώστε το 5 στο τετράγωνο.
x=\frac{-5±\sqrt{25-8\times 3}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-5±\sqrt{25-24}}{2\times 2}
Πολλαπλασιάστε το -8 επί 3.
x=\frac{-5±\sqrt{1}}{2\times 2}
Προσθέστε το 25 και το -24.
x=\frac{-5±1}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 1.
x=\frac{-5±1}{4}
Πολλαπλασιάστε το 2 επί 2.
x=-\frac{4}{4}
Λύστε τώρα την εξίσωση x=\frac{-5±1}{4} όταν το ± είναι συν. Προσθέστε το -5 και το 1.
x=-1
Διαιρέστε το -4 με το 4.
x=-\frac{6}{4}
Λύστε τώρα την εξίσωση x=\frac{-5±1}{4} όταν το ± είναι μείον. Αφαιρέστε 1 από -5.
x=-\frac{3}{2}
Μειώστε το κλάσμα \frac{-6}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
2x^{2}+5x+3=2\left(x-\left(-1\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το -1 με το x_{1} και το -\frac{3}{2} με το x_{2}.
2x^{2}+5x+3=2\left(x+1\right)\left(x+\frac{3}{2}\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
2x^{2}+5x+3=2\left(x+1\right)\times \frac{2x+3}{2}
Προσθέστε το \frac{3}{2} και το x βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
2x^{2}+5x+3=\left(x+1\right)\left(2x+3\right)
Ακύρωση του μέγιστου κοινού παράγοντα 2 σε 2 και 2.