Λύση ως προς h
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&s=\frac{5s_{24}}{6}\text{ or }r=0\end{matrix}\right,
Λύση ως προς r
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&s=\frac{5s_{24}}{6}\text{ or }h=0\end{matrix}\right,
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(2\times 5+2\right)hrs=10hrs_{24}
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με 5.
\left(10+2\right)hrs=10hrs_{24}
Πολλαπλασιάστε 2 και 5 για να λάβετε 10.
12hrs=10hrs_{24}
Προσθέστε 10 και 2 για να λάβετε 12.
12hrs-10hrs_{24}=0
Αφαιρέστε 10hrs_{24} και από τις δύο πλευρές.
\left(12rs-10rs_{24}\right)h=0
Συνδυάστε όλους τους όρους που περιέχουν h.
h=0
Διαιρέστε το 0 με το 12rs-10rs_{24}.
\left(2\times 5+2\right)hrs=10hrs_{24}
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με 5.
\left(10+2\right)hrs=10hrs_{24}
Πολλαπλασιάστε 2 και 5 για να λάβετε 10.
12hrs=10hrs_{24}
Προσθέστε 10 και 2 για να λάβετε 12.
12hrs-10hrs_{24}=0
Αφαιρέστε 10hrs_{24} και από τις δύο πλευρές.
\left(12hs-10hs_{24}\right)r=0
Συνδυάστε όλους τους όρους που περιέχουν r.
r=0
Διαιρέστε το 0 με το 12hs-10hs_{24}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}