Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\left(2x+1\right)\left(6x^{4}-7x^{3}-10x^{2}+17x-6\right)
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -6 όρων και q διαιρείται τον αρχικό συντελεστή 12. Μία από αυτές τις ρίζες είναι η -\frac{1}{2}. Παραγοντοποιήστε το πολυώνυμο διαιρώντας το από το 2x+1.
\left(x-1\right)\left(6x^{3}-x^{2}-11x+6\right)
Υπολογίστε 6x^{4}-7x^{3}-10x^{2}+17x-6. Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -6 όρων και q διαιρείται τον αρχικό συντελεστή 6. Μία από αυτές τις ρίζες είναι η 1. Παραγοντοποιήστε το πολυώνυμο διαιρώντας το από το x-1.
\left(x-1\right)\left(6x^{2}+5x-6\right)
Υπολογίστε 6x^{3}-x^{2}-11x+6. Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 6 όρων και q διαιρείται τον αρχικό συντελεστή 6. Μία από αυτές τις ρίζες είναι η 1. Παραγοντοποιήστε το πολυώνυμο διαιρώντας το από το x-1.
a+b=5 ab=6\left(-6\right)=-36
Υπολογίστε 6x^{2}+5x-6. Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως 6x^{2}+ax+bx-6. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,36 -2,18 -3,12 -4,9 -6,6
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=9
Η λύση είναι το ζεύγος που δίνει άθροισμα 5.
\left(6x^{2}-4x\right)+\left(9x-6\right)
Γράψτε πάλι το 6x^{2}+5x-6 ως \left(6x^{2}-4x\right)+\left(9x-6\right).
2x\left(3x-2\right)+3\left(3x-2\right)
Παραγοντοποιήστε 2x στο πρώτο και στο 3 της δεύτερης ομάδας.
\left(3x-2\right)\left(2x+3\right)
Παραγοντοποιήστε τον κοινό όρο 3x-2 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(3x-2\right)\left(2x+1\right)\left(2x+3\right)\left(x-1\right)^{2}
Γράψτε ξανά την πλήρη παραγοντοποιημένη παράσταση.