Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

3x^{2}+2x-5=0
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
a+b=2 ab=3\left(-5\right)=-15
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 3x^{2}+ax+bx-5. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,15 -3,5
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -15.
-1+15=14 -3+5=2
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-3 b=5
Η λύση είναι το ζεύγος που δίνει άθροισμα 2.
\left(3x^{2}-3x\right)+\left(5x-5\right)
Γράψτε πάλι το 3x^{2}+2x-5 ως \left(3x^{2}-3x\right)+\left(5x-5\right).
3x\left(x-1\right)+5\left(x-1\right)
Παραγοντοποιήστε 3x στο πρώτο και στο 5 της δεύτερης ομάδας.
\left(x-1\right)\left(3x+5\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=1 x=-\frac{5}{3}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-1=0 και 3x+5=0.
3x^{2}+2x-5=0
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-5\right)}}{2\times 3}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 3, το b με 2 και το c με -5 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-5\right)}}{2\times 3}
Υψώστε το 2 στο τετράγωνο.
x=\frac{-2±\sqrt{4-12\left(-5\right)}}{2\times 3}
Πολλαπλασιάστε το -4 επί 3.
x=\frac{-2±\sqrt{4+60}}{2\times 3}
Πολλαπλασιάστε το -12 επί -5.
x=\frac{-2±\sqrt{64}}{2\times 3}
Προσθέστε το 4 και το 60.
x=\frac{-2±8}{2\times 3}
Λάβετε την τετραγωνική ρίζα του 64.
x=\frac{-2±8}{6}
Πολλαπλασιάστε το 2 επί 3.
x=\frac{6}{6}
Λύστε τώρα την εξίσωση x=\frac{-2±8}{6} όταν το ± είναι συν. Προσθέστε το -2 και το 8.
x=1
Διαιρέστε το 6 με το 6.
x=-\frac{10}{6}
Λύστε τώρα την εξίσωση x=\frac{-2±8}{6} όταν το ± είναι μείον. Αφαιρέστε 8 από -2.
x=-\frac{5}{3}
Μειώστε το κλάσμα \frac{-10}{6} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=1 x=-\frac{5}{3}
Η εξίσωση έχει πλέον λυθεί.
3x^{2}+2x-5=0
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
3x^{2}+2x=5
Προσθήκη 5 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\frac{3x^{2}+2x}{3}=\frac{5}{3}
Διαιρέστε και τις δύο πλευρές με 3.
x^{2}+\frac{2}{3}x=\frac{5}{3}
Η διαίρεση με το 3 αναιρεί τον πολλαπλασιασμό με το 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(\frac{1}{3}\right)^{2}
Διαιρέστε το \frac{2}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{1}{3}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{1}{3} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
Υψώστε το \frac{1}{3} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
Προσθέστε το \frac{5}{3} και το \frac{1}{9} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x+\frac{1}{3}\right)^{2}=\frac{16}{9}
Παραγον x^{2}+\frac{2}{3}x+\frac{1}{9}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{1}{3}=\frac{4}{3} x+\frac{1}{3}=-\frac{4}{3}
Απλοποιήστε.
x=1 x=-\frac{5}{3}
Αφαιρέστε \frac{1}{3} και από τις δύο πλευρές της εξίσωσης.