Λύση ως προς x
x=1
x=-\frac{1}{2}=-0,5
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
-4x^{2}+4x=2x-2
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -4x με το x-1.
-4x^{2}+4x-2x=-2
Αφαιρέστε 2x και από τις δύο πλευρές.
-4x^{2}+2x=-2
Συνδυάστε το 4x και το -2x για να λάβετε 2x.
-4x^{2}+2x+2=0
Προσθήκη 2 και στις δύο πλευρές.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -4, το b με 2 και το c με 2 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)\times 2}}{2\left(-4\right)}
Υψώστε το 2 στο τετράγωνο.
x=\frac{-2±\sqrt{4+16\times 2}}{2\left(-4\right)}
Πολλαπλασιάστε το -4 επί -4.
x=\frac{-2±\sqrt{4+32}}{2\left(-4\right)}
Πολλαπλασιάστε το 16 επί 2.
x=\frac{-2±\sqrt{36}}{2\left(-4\right)}
Προσθέστε το 4 και το 32.
x=\frac{-2±6}{2\left(-4\right)}
Λάβετε την τετραγωνική ρίζα του 36.
x=\frac{-2±6}{-8}
Πολλαπλασιάστε το 2 επί -4.
x=\frac{4}{-8}
Λύστε τώρα την εξίσωση x=\frac{-2±6}{-8} όταν το ± είναι συν. Προσθέστε το -2 και το 6.
x=-\frac{1}{2}
Μειώστε το κλάσμα \frac{4}{-8} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 4.
x=-\frac{8}{-8}
Λύστε τώρα την εξίσωση x=\frac{-2±6}{-8} όταν το ± είναι μείον. Αφαιρέστε 6 από -2.
x=1
Διαιρέστε το -8 με το -8.
x=-\frac{1}{2} x=1
Η εξίσωση έχει πλέον λυθεί.
-4x^{2}+4x=2x-2
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -4x με το x-1.
-4x^{2}+4x-2x=-2
Αφαιρέστε 2x και από τις δύο πλευρές.
-4x^{2}+2x=-2
Συνδυάστε το 4x και το -2x για να λάβετε 2x.
\frac{-4x^{2}+2x}{-4}=-\frac{2}{-4}
Διαιρέστε και τις δύο πλευρές με -4.
x^{2}+\frac{2}{-4}x=-\frac{2}{-4}
Η διαίρεση με το -4 αναιρεί τον πολλαπλασιασμό με το -4.
x^{2}-\frac{1}{2}x=-\frac{2}{-4}
Μειώστε το κλάσμα \frac{2}{-4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Μειώστε το κλάσμα \frac{-2}{-4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Διαιρέστε το -\frac{1}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Υψώστε το -\frac{1}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Προσθέστε το \frac{1}{2} και το \frac{1}{16} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Παραγον x^{2}-\frac{1}{2}x+\frac{1}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Απλοποιήστε.
x=1 x=-\frac{1}{2}
Προσθέστε \frac{1}{4} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}