Λύση ως προς x
x=81
x=0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(-x\right)x-81\left(-x\right)=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -x με το x-81.
\left(-x\right)x+81x=0
Πολλαπλασιάστε -81 και -1 για να λάβετε 81.
-x^{2}+81x=0
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
x\left(-x+81\right)=0
Παραγοντοποιήστε το x.
x=0 x=81
Για να βρείτε λύσεις εξίσωσης, να λύσετε x=0 και -x+81=0.
\left(-x\right)x-81\left(-x\right)=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -x με το x-81.
\left(-x\right)x+81x=0
Πολλαπλασιάστε -81 και -1 για να λάβετε 81.
-x^{2}+81x=0
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
x=\frac{-81±\sqrt{81^{2}}}{2\left(-1\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -1, το b με 81 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-81±81}{2\left(-1\right)}
Λάβετε την τετραγωνική ρίζα του 81^{2}.
x=\frac{-81±81}{-2}
Πολλαπλασιάστε το 2 επί -1.
x=\frac{0}{-2}
Λύστε τώρα την εξίσωση x=\frac{-81±81}{-2} όταν το ± είναι συν. Προσθέστε το -81 και το 81.
x=0
Διαιρέστε το 0 με το -2.
x=-\frac{162}{-2}
Λύστε τώρα την εξίσωση x=\frac{-81±81}{-2} όταν το ± είναι μείον. Αφαιρέστε 81 από -81.
x=81
Διαιρέστε το -162 με το -2.
x=0 x=81
Η εξίσωση έχει πλέον λυθεί.
\left(-x\right)x-81\left(-x\right)=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -x με το x-81.
\left(-x\right)x+81x=0
Πολλαπλασιάστε -81 και -1 για να λάβετε 81.
-x^{2}+81x=0
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
\frac{-x^{2}+81x}{-1}=\frac{0}{-1}
Διαιρέστε και τις δύο πλευρές με -1.
x^{2}+\frac{81}{-1}x=\frac{0}{-1}
Η διαίρεση με το -1 αναιρεί τον πολλαπλασιασμό με το -1.
x^{2}-81x=\frac{0}{-1}
Διαιρέστε το 81 με το -1.
x^{2}-81x=0
Διαιρέστε το 0 με το -1.
x^{2}-81x+\left(-\frac{81}{2}\right)^{2}=\left(-\frac{81}{2}\right)^{2}
Διαιρέστε το -81, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{81}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{81}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-81x+\frac{6561}{4}=\frac{6561}{4}
Υψώστε το -\frac{81}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
\left(x-\frac{81}{2}\right)^{2}=\frac{6561}{4}
Παραγον x^{2}-81x+\frac{6561}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{81}{2}\right)^{2}}=\sqrt{\frac{6561}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{81}{2}=\frac{81}{2} x-\frac{81}{2}=-\frac{81}{2}
Απλοποιήστε.
x=81 x=0
Προσθέστε \frac{81}{2} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}