Λύση ως προς d
\left\{\begin{matrix}d=-\frac{pz-2z+59}{p}\text{, }&p\neq 0\\d\in \mathrm{R}\text{, }&z=\frac{59}{2}\text{ and }p=0\end{matrix}\right,
Λύση ως προς p
\left\{\begin{matrix}p=\frac{2z-59}{z+d}\text{, }&d\neq -z\\p\in \mathrm{R}\text{, }&z=\frac{59}{2}\text{ and }d=-\frac{59}{2}\end{matrix}\right,
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(-p\right)d+\left(-p\right)z=-2z+59
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -p με το d+z.
\left(-p\right)d=-2z+59-\left(-p\right)z
Αφαιρέστε \left(-p\right)z και από τις δύο πλευρές.
-pd=-2z+59+pz
Πολλαπλασιάστε -1 και -1 για να λάβετε 1.
\left(-p\right)d=pz-2z+59
Η εξίσωση είναι σε τυπική μορφή.
\frac{\left(-p\right)d}{-p}=\frac{pz-2z+59}{-p}
Διαιρέστε και τις δύο πλευρές με -p.
d=\frac{pz-2z+59}{-p}
Η διαίρεση με το -p αναιρεί τον πολλαπλασιασμό με το -p.
d=-\frac{pz-2z+59}{p}
Διαιρέστε το zp-2z+59 με το -p.
\left(-p\right)d+\left(-p\right)z=-2z+59
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -p με το d+z.
-pz-dp=-2z+59
Αναδιατάξτε τους όρους.
\left(-z-d\right)p=-2z+59
Συνδυάστε όλους τους όρους που περιέχουν p.
\left(-z-d\right)p=59-2z
Η εξίσωση είναι σε τυπική μορφή.
\frac{\left(-z-d\right)p}{-z-d}=\frac{59-2z}{-z-d}
Διαιρέστε και τις δύο πλευρές με -z-d.
p=\frac{59-2z}{-z-d}
Η διαίρεση με το -z-d αναιρεί τον πολλαπλασιασμό με το -z-d.
p=-\frac{59-2z}{z+d}
Διαιρέστε το -2z+59 με το -z-d.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}