Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

-3x^{2}+5x-1=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -3, το b με 5 και το c με -1 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Υψώστε το 5 στο τετράγωνο.
x=\frac{-5±\sqrt{25+12\left(-1\right)}}{2\left(-3\right)}
Πολλαπλασιάστε το -4 επί -3.
x=\frac{-5±\sqrt{25-12}}{2\left(-3\right)}
Πολλαπλασιάστε το 12 επί -1.
x=\frac{-5±\sqrt{13}}{2\left(-3\right)}
Προσθέστε το 25 και το -12.
x=\frac{-5±\sqrt{13}}{-6}
Πολλαπλασιάστε το 2 επί -3.
x=\frac{\sqrt{13}-5}{-6}
Λύστε τώρα την εξίσωση x=\frac{-5±\sqrt{13}}{-6} όταν το ± είναι συν. Προσθέστε το -5 και το \sqrt{13}.
x=\frac{5-\sqrt{13}}{6}
Διαιρέστε το -5+\sqrt{13} με το -6.
x=\frac{-\sqrt{13}-5}{-6}
Λύστε τώρα την εξίσωση x=\frac{-5±\sqrt{13}}{-6} όταν το ± είναι μείον. Αφαιρέστε \sqrt{13} από -5.
x=\frac{\sqrt{13}+5}{6}
Διαιρέστε το -5-\sqrt{13} με το -6.
x=\frac{5-\sqrt{13}}{6} x=\frac{\sqrt{13}+5}{6}
Η εξίσωση έχει πλέον λυθεί.
-3x^{2}+5x-1=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
-3x^{2}+5x-1-\left(-1\right)=-\left(-1\right)
Προσθέστε 1 και στις δύο πλευρές της εξίσωσης.
-3x^{2}+5x=-\left(-1\right)
Η αφαίρεση του -1 από τον εαυτό έχει ως αποτέλεσμα 0.
-3x^{2}+5x=1
Αφαιρέστε -1 από 0.
\frac{-3x^{2}+5x}{-3}=\frac{1}{-3}
Διαιρέστε και τις δύο πλευρές με -3.
x^{2}+\frac{5}{-3}x=\frac{1}{-3}
Η διαίρεση με το -3 αναιρεί τον πολλαπλασιασμό με το -3.
x^{2}-\frac{5}{3}x=\frac{1}{-3}
Διαιρέστε το 5 με το -3.
x^{2}-\frac{5}{3}x=-\frac{1}{3}
Διαιρέστε το 1 με το -3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{1}{3}+\left(-\frac{5}{6}\right)^{2}
Διαιρέστε το -\frac{5}{3}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{6}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{6} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{1}{3}+\frac{25}{36}
Υψώστε το -\frac{5}{6} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{13}{36}
Προσθέστε το -\frac{1}{3} και το \frac{25}{36} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{5}{6}\right)^{2}=\frac{13}{36}
Παραγον x^{2}-\frac{5}{3}x+\frac{25}{36}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{6}=\frac{\sqrt{13}}{6} x-\frac{5}{6}=-\frac{\sqrt{13}}{6}
Απλοποιήστε.
x=\frac{\sqrt{13}+5}{6} x=\frac{5-\sqrt{13}}{6}
Προσθέστε \frac{5}{6} και στις δύο πλευρές της εξίσωσης.