Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

-3=x^{2}-4x+4-3
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Αφαιρέστε 3 από 4 για να λάβετε 1.
x^{2}-4x+1=-3
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
x^{2}-4x+1+3=0
Προσθήκη 3 και στις δύο πλευρές.
x^{2}-4x+4=0
Προσθέστε 1 και 3 για να λάβετε 4.
a+b=-4 ab=4
Για να λύσετε την εξίσωση, παραγοντοποιήστε x^{2}-4x+4 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-4 -2,-2
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 4.
-1-4=-5 -2-2=-4
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-2 b=-2
Η λύση είναι το ζεύγος που δίνει άθροισμα -4.
\left(x-2\right)\left(x-2\right)
Επανεγγραφή παραγοντοποιηθεί παράστασης \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που έχουν ληφθεί.
\left(x-2\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=2
Για να βρείτε τη λύση της εξίσωσης, λύστε το x-2=0.
-3=x^{2}-4x+4-3
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Αφαιρέστε 3 από 4 για να λάβετε 1.
x^{2}-4x+1=-3
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
x^{2}-4x+1+3=0
Προσθήκη 3 και στις δύο πλευρές.
x^{2}-4x+4=0
Προσθέστε 1 και 3 για να λάβετε 4.
a+b=-4 ab=1\times 4=4
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+4. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-4 -2,-2
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 4.
-1-4=-5 -2-2=-4
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-2 b=-2
Η λύση είναι το ζεύγος που δίνει άθροισμα -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Γράψτε πάλι το x^{2}-4x+4 ως \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Παραγοντοποιήστε x στο πρώτο και στο -2 της δεύτερης ομάδας.
\left(x-2\right)\left(x-2\right)
Παραγοντοποιήστε τον κοινό όρο x-2 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(x-2\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=2
Για να βρείτε τη λύση της εξίσωσης, λύστε το x-2=0.
-3=x^{2}-4x+4-3
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Αφαιρέστε 3 από 4 για να λάβετε 1.
x^{2}-4x+1=-3
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
x^{2}-4x+1+3=0
Προσθήκη 3 και στις δύο πλευρές.
x^{2}-4x+4=0
Προσθέστε 1 και 3 για να λάβετε 4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -4 και το c με 4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Υψώστε το -4 στο τετράγωνο.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Πολλαπλασιάστε το -4 επί 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Προσθέστε το 16 και το -16.
x=-\frac{-4}{2}
Λάβετε την τετραγωνική ρίζα του 0.
x=\frac{4}{2}
Το αντίθετο ενός αριθμού -4 είναι 4.
x=2
Διαιρέστε το 4 με το 2.
-3=x^{2}-4x+4-3
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-2\right)^{2}.
-3=x^{2}-4x+1
Αφαιρέστε 3 από 4 για να λάβετε 1.
x^{2}-4x+1=-3
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
x^{2}-4x=-3-1
Αφαιρέστε 1 και από τις δύο πλευρές.
x^{2}-4x=-4
Αφαιρέστε 1 από -3 για να λάβετε -4.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Διαιρέστε το -4, τον συντελεστή του όρου x, με το 2 για να λάβετε -2. Στη συνέχεια, προσθέστε το τετράγωνο του -2 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-4x+4=-4+4
Υψώστε το -2 στο τετράγωνο.
x^{2}-4x+4=0
Προσθέστε το -4 και το 4.
\left(x-2\right)^{2}=0
Παραγον x^{2}-4x+4. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-2=0 x-2=0
Απλοποιήστε.
x=2 x=2
Προσθέστε 2 και στις δύο πλευρές της εξίσωσης.
x=2
Η εξίσωση έχει πλέον λυθεί. Οι λύσεις είναι ίδιες.