Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

-2x+3x^{3}-20=0
Αφαιρέστε 20 και από τις δύο πλευρές.
3x^{3}-2x-20=0
Αναδιατάξτε την εξίσωση για να τη θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -20 όρων και q διαιρείται τον αρχικό συντελεστή 3. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
3x^{2}+6x+10=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 3x^{3}-2x-20 με το x-2 για να λάβετε 3x^{2}+6x+10. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 3 για a, 6 για b και 10 για c στον πολυωνυμικό τύπου.
x=\frac{-6±\sqrt{-84}}{6}
Κάντε τους υπολογισμούς.
x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
Επιλύστε την εξίσωση 3x^{2}+6x+10=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=2 x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
Λίστα όλων των λύσεων που βρέθηκαν.
-2x+3x^{3}-20=0
Αφαιρέστε 20 και από τις δύο πλευρές.
3x^{3}-2x-20=0
Αναδιατάξτε την εξίσωση για να τη θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -20 όρων και q διαιρείται τον αρχικό συντελεστή 3. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
3x^{2}+6x+10=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το 3x^{3}-2x-20 με το x-2 για να λάβετε 3x^{2}+6x+10. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 3 για a, 6 για b και 10 για c στον πολυωνυμικό τύπου.
x=\frac{-6±\sqrt{-84}}{6}
Κάντε τους υπολογισμούς.
x\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
x=2
Λίστα όλων των λύσεων που βρέθηκαν.