Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς z
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{1}{4z^{-3}}
Χρησιμοποιήστε τους εκθετικούς κανόνες για να απλοποιήσετε την παράσταση.
\frac{1}{4}\times \frac{1}{z^{-3}}
Για να υψώσετε σε δύναμη το γινόμενο δύο ή περισσότερων αριθμών, υψώστε κάθε αριθμό στη δύναμη και λάβετε το γινόμενό τους.
\frac{1}{4}z^{-3\left(-1\right)}
Για να υψώσετε σε δύναμη έναν αριθμό που είναι υψωμένος σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες.
\frac{1}{4}z^{3}
Πολλαπλασιάστε το -3 επί -1.
-\left(4z^{-3}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}z}(4z^{-3})
Εάν F είναι η σύνθεση των δύο διαφορίσιμων συναρτήσεων f\left(u\right) και u=g\left(x\right), αυτό σημαίνει ότι, εάν F\left(x\right)=f\left(g\left(x\right)\right), τότε η παράγωγος της F είναι η παράγωγος της f ως προς u επί την παράγωγο της g ως προς x, δηλαδή, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4z^{-3}\right)^{-2}\left(-3\right)\times 4z^{-3-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
12z^{-4}\times \left(4z^{-3}\right)^{-2}
Απλοποιήστε.