Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{3}-3x^{2}+3x-1=-27
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} για να αναπτύξετε το \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1+27=0
Προσθήκη 27 και στις δύο πλευρές.
x^{3}-3x^{2}+3x+26=0
Προσθέστε -1 και 27 για να λάβετε 26.
±26,±13,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 26 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}-5x+13=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}-3x^{2}+3x+26 με το x+2 για να λάβετε x^{2}-5x+13. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 13}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, -5 για b και 13 για c στον πολυωνυμικό τύπου.
x=\frac{5±\sqrt{-27}}{2}
Κάντε τους υπολογισμούς.
x\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
x=-2
Λίστα όλων των λύσεων που βρέθηκαν.