Λύση ως προς x (complex solution)
x=\frac{i\sqrt{2\left(\sqrt{113}-1\right)}}{2}\approx 2,194327438i
x=-\frac{i\sqrt{2\left(\sqrt{113}-1\right)}}{2}\approx -0-2,194327438i
x = -\frac{\sqrt{2 {(\sqrt{113} + 1)}}}{2} \approx -2,411446227
x = \frac{\sqrt{2 {(\sqrt{113} + 1)}}}{2} \approx 2,411446227
Λύση ως προς x
x = -\frac{\sqrt{2 {(\sqrt{113} + 1)}}}{2} \approx -2,411446227
x = \frac{\sqrt{2 {(\sqrt{113} + 1)}}}{2} \approx 2,411446227
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{4}-15-x^{2}=13
Αφαιρέστε x^{2} και από τις δύο πλευρές.
x^{4}-15-x^{2}-13=0
Αφαιρέστε 13 και από τις δύο πλευρές.
x^{4}-28-x^{2}=0
Αφαιρέστε 13 από -15 για να λάβετε -28.
t^{2}-t-28=0
Αντικαταστήστε το t με το x^{2}.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-28\right)}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, -1 για b και -28 για c στον πολυωνυμικό τύπου.
t=\frac{1±\sqrt{113}}{2}
Κάντε τους υπολογισμούς.
t=\frac{\sqrt{113}+1}{2} t=\frac{1-\sqrt{113}}{2}
Επιλύστε την εξίσωση t=\frac{1±\sqrt{113}}{2} όταν το ± είναι συν και όταν ± είναι μείον.
x=-\sqrt{\frac{\sqrt{113}+1}{2}} x=\sqrt{\frac{\sqrt{113}+1}{2}} x=-i\sqrt{-\frac{1-\sqrt{113}}{2}} x=i\sqrt{-\frac{1-\sqrt{113}}{2}}
Αφού x=t^{2}, οι λύσεις ελέγχονται από την αξιολόγηση x=±\sqrt{t} για κάθε t.
x^{4}-15-x^{2}=13
Αφαιρέστε x^{2} και από τις δύο πλευρές.
x^{4}-15-x^{2}-13=0
Αφαιρέστε 13 και από τις δύο πλευρές.
x^{4}-28-x^{2}=0
Αφαιρέστε 13 από -15 για να λάβετε -28.
t^{2}-t-28=0
Αντικαταστήστε το t με το x^{2}.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-28\right)}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, -1 για b και -28 για c στον πολυωνυμικό τύπου.
t=\frac{1±\sqrt{113}}{2}
Κάντε τους υπολογισμούς.
t=\frac{\sqrt{113}+1}{2} t=\frac{1-\sqrt{113}}{2}
Επιλύστε την εξίσωση t=\frac{1±\sqrt{113}}{2} όταν το ± είναι συν και όταν ± είναι μείον.
x=\frac{\sqrt{2\sqrt{113}+2}}{2} x=-\frac{\sqrt{2\sqrt{113}+2}}{2}
Αφού x=t^{2}, οι λύσεις ελέγχονται από την αξιολόγηση x=±\sqrt{t} για θετικές t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}