Λύση ως προς P
\left\{\begin{matrix}P=\frac{2A^{2}}{f}\text{, }&A\neq 0\text{ and }f\neq 0\\P\neq 0\text{, }&f=0\text{ and }A=0\end{matrix}\right,
Λύση ως προς A (complex solution)
A=-\frac{\sqrt{P}\sqrt{2f}}{2}
A=\frac{\sqrt{P}\sqrt{2f}}{2}\text{, }P\neq 0
Λύση ως προς A
A=\frac{\sqrt{2Pf}}{2}
A=-\frac{\sqrt{2Pf}}{2}\text{, }\left(f\geq 0\text{ and }P>0\right)\text{ or }\left(f\leq 0\text{ and }P<0\right)
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2AA=\frac{1}{2}f\times 2P
Η μεταβλητή P δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το 2P, δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των P,2.
2A^{2}=\frac{1}{2}f\times 2P
Πολλαπλασιάστε A και A για να λάβετε A^{2}.
2A^{2}=fP
Πολλαπλασιάστε \frac{1}{2} και 2 για να λάβετε 1.
fP=2A^{2}
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\frac{fP}{f}=\frac{2A^{2}}{f}
Διαιρέστε και τις δύο πλευρές με f.
P=\frac{2A^{2}}{f}
Η διαίρεση με το f αναιρεί τον πολλαπλασιασμό με το f.
P=\frac{2A^{2}}{f}\text{, }P\neq 0
Η μεταβλητή P δεν μπορεί να είναι ίση με 0.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}