Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

8^{\frac{1}{3}}\left(x^{6}\right)^{\frac{1}{3}}
Αναπτύξτε το \left(8x^{6}\right)^{\frac{1}{3}}.
8^{\frac{1}{3}}x^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 6 με τον αριθμό \frac{1}{3} για να λάβετε τον αριθμό 2.
2x^{2}
Υπολογίστε το 8στη δύναμη του \frac{1}{3} και λάβετε 2.
\frac{1}{3}\times \left(8x^{6}\right)^{\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(8x^{6})
Εάν F είναι η σύνθεση των δύο διαφορίσιμων συναρτήσεων f\left(u\right) και u=g\left(x\right), αυτό σημαίνει ότι, εάν F\left(x\right)=f\left(g\left(x\right)\right), τότε η παράγωγος της F είναι η παράγωγος της f ως προς u επί την παράγωγο της g ως προς x, δηλαδή, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{3}\times \left(8x^{6}\right)^{-\frac{2}{3}}\times 6\times 8x^{6-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
16x^{5}\times \left(8x^{6}\right)^{-\frac{2}{3}}
Απλοποιήστε.