Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς a
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

64^{-\frac{1}{6}}\left(a^{24}\right)^{-\frac{1}{6}}
Αναπτύξτε το \left(64a^{24}\right)^{-\frac{1}{6}}.
64^{-\frac{1}{6}}a^{-4}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 24 με τον αριθμό -\frac{1}{6} για να λάβετε τον αριθμό -4.
\frac{1}{2}a^{-4}
Υπολογίστε το 64στη δύναμη του -\frac{1}{6} και λάβετε \frac{1}{2}.
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{1}{6}-1}\frac{\mathrm{d}}{\mathrm{d}a}(64a^{24})
Εάν F είναι η σύνθεση των δύο διαφορίσιμων συναρτήσεων f\left(u\right) και u=g\left(x\right), αυτό σημαίνει ότι, εάν F\left(x\right)=f\left(g\left(x\right)\right), τότε η παράγωγος της F είναι η παράγωγος της f ως προς u επί την παράγωγο της g ως προς x, δηλαδή, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{7}{6}}\times 24\times 64a^{24-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
-256a^{23}\times \left(64a^{24}\right)^{-\frac{7}{6}}
Απλοποιήστε.